Patterns of Turbulence

Laurette Tuckerman, PMMH-ESPCI-CNRS Dwight Barkley, University of Warwick

Matthew Chantry, Oxford University Sébastien Gomé, PMMH-CNRS-ESPCI-Sorbonne

Wall-bounded shear flows

Experiments at CEA/Saclay by Prigent, Dauchot (2000-3)

Length 770 half-gaps — Streamwise ·

Spiral Turbulence in counter-rotating Taylor-Couette Flow

Between rotating and stationary disks

3758 Phys. Fluids, Vol. 14, No. 11, November 2002

A. Cros and P. Le Gal

FIG. 5. Turbulent spirals for h=2.2 mm and $\Omega=52 \text{ rpm}$ clockwise (*Re* = 106 700).

FIG. 7. Turbulent spirals for h=2.2 mm and $\Omega=74 \text{ rpm}$ clockwise (*Re* = 151 900). One spot is visible on the left side of the disk.

J. Fluid Mech. (2010), vol. 650, pp. 119-129. © Cambridge University Press 2010 doi:10.1017/S0022112010000297

Formation of turbulent patterns near the onset of transition in plane Couette flow

Y. DUGUET^{1,2}[†], P. SCHLATTER¹ AND D. S. HENNINGSON¹

¹Linné Flow Centre, KTH Mechanics, SE-10044 Stockholm, Sweden ²LIMSI-CNRS, UPR 3251, 91403 Orsay, France

(c)

Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow

Alvaro Meseguer,^{1,*} Fernando Mellibovsky,¹ Marc Avila,² and Francisco Marques¹ ¹Departament de Física Aplicada, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain ²Max Planck Institute for Dynamics and Self-Organization, 37073 Göttingen, Germany

Waleffe: self-sustaining process (SSP)

F. Waleffe & J. Kim, How streamwise rolls and streaks sustain in a shear flow: Part 2, AIAA paper 98-2997 (Albuquerque, June 1998) F. Waleffe, On a self-sustaining process in shear flows, Phys. Fluids 9, 883-900 (1997)

Experiments at CEA/Saclay by Prigent, Dauchot (2000-3)

Length 770 half-gaps — Streamwise -

Couette Flow: spatio-temporal scan

Couette Flow: spatio-temporal scan

Ζ

Upper Threshold

Probability Distribution Function of $|\widehat{w}_1|$ (modulus of m=1, λ =40 component of spanwise velocity)

Varying angle: Regimes as a function of θ , Re

Extreme Wavelengths and Tilt Angles

Fixed Re = 350

Minimum Wavelength 35 at $\theta = 24^{\circ}$

Maximum Wavelength 65 at $\theta = 24^{\circ}$

 $\begin{array}{l} \text{Minimum tilt 15}^{\text{o}} \\ \text{at } L_{z'} = 120 \end{array}$

Maximum tilt 66° at $L_{z'} = 120$

Mean flow

time

Mean flow (seen in horizontal plane)

Waleffe flow

Toy model of plane Couette flow Stress free boundaries in y

Body forced,
$$F = C \sin\left(\frac{\pi}{2}\frac{y}{H}\right)$$

Demonstration of self-sustaining process.

Confined Kolmogorov flow

Do the same structures emerge?

PCF vs Waleffe flow

V

-V

PCF vs Waleffe flow

Waleffe flow captures the interior of PCF

Rescale relative to PCF H = 0.625h, V = 0.625U

Turbulent bands

Plane Couette flow Re = 350

180h

Waleffe flow Re = 350

80h

180h

Mean structure

Plane Couette flow, Re = 350

Mean structure

Plane Couette flow, Re = 350

Mean structure

Plane Couette flow, Re = 350

Modelling Waleffe flow

Using leading 4 Fourier modes that satisfy BC

$$u(x, y, z) = u_0(x, z) + u_1(x, z) \sin(\beta y) + u_2(x, z) \cos(2\beta y) + u_3(x, z) \sin(3\beta y),$$

Result: 7 PDEs in (t, x, z)Also requires only half the resolution in *x,z*

Defining and characterizing the lower bound

Discontinuous or Continuous?

Supersize me

$\operatorname{Re} > \operatorname{Re}_c$

Bottin et al. 1998 Prigent et al. 2002 Duguet et al. 2010 K. Avila 2013

Sano & Tamai 2016

Lemoult et al. 2016

 $\begin{array}{c} \text{Our system} \\ [2560, 2560] \end{array}$

Supersize me

 $\operatorname{Re} \approx \operatorname{Re}_c$

Bottin et al. 1998 Prigent et al. 2002 Duguet et al. 2010 K. Avila 2013

Sano & Tamai 2016

Lemoult et al. 2016

 $\begin{array}{c} \text{Our system} \\ [2560, 2560] \end{array}$

Previous studies: discontinuous

Our result: Continuous

 $1 \sec = 10^4 h/U$

Shear flow

$\operatorname{Re} \approx \operatorname{Re}_c$

L

