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Between rotating and stationary disks 





Waleffe: self-sustaining process (SSP)
F.  Waleffe & J. Kim, How streamwise rolls and streaks sustain in a shear flow: Part 2, AIAA paper 98-2997 (Albuquerque, June 1998)
F.  Waleffe, On a self-sustaining process in shear flows, Phys. Fluids 9, 883-900 (1997)
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Couette Flow: spatio-temporal scan



Couette Flow: spatio-temporal scan
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Extreme  
Wavelengths and Tilt Angles 

Minimum  
Wavelength 35 

at  θ = 24o

Fixed Re = 350
Maximum  

Wavelength 65 
at  θ = 24o

Minimum tilt 15o 

at Lz' = 120
Maximum tilt 66o 

at Lz' = 120
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Mean flow



Mean flow (seen  in horizontal plane)

along-band flow

along-band flow



Waleffe flow
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Toy model of plane Couette flow  
 
Stress free boundaries in

Body forced,  

Demonstration of self-sustaining 
process. 
 
Confined Kolmogorov flow

Do the same structures emerge?
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PCF vs Waleffe flow
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Turbulent bands
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Mean structure
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Re = 350Plane Couette flow,
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Modelling Waleffe flow

Result: 7 PDEs in 

u(x, y, z) = u0(x, z) + u1(x, z) sin(�y)

+ u2(x, z) cos(2�y) + u3(x, z) sin(3�y),

v(x, y, z) = v1(x, z) cos(�y)

+ v2(x, z) sin(2�y) + v3(x, z) cos(3�y),

w(x, y, z) = w0(x, z) + w1(x, z) sin(�y)

+ w2(x, z) cos(2�y) + w3(x, z) sin(3�y),

Using leading 4 Fourier modes that satisfy BC

(t, x, z)
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Also requires only half the resolution in x,z
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Defining and characterizing 
the lower bound



How low does turbulence go?

Continuous or discontinuous?

Universal or not?

First asked by Pomeau 1986

Laminar flow
Uniform turbulence

Re
Intermittency
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Discontinuous or Continuous?

Universal exponent
0.583



Supersize me Re > Rec

Our system

Prigent et al. 2002  
Duguet et al. 2010

Bottin et al. 1998

Lemoult et al. 2016

[2560, 2560]

Sano & Tamai 2016

K. Avila 2013



Supersize me

Our system

Prigent et al. 2002  
Duguet et al. 2010

Bottin et al. 1998

Lemoult et al. 2016

[2560, 2560]

Re ⇡ Rec

Sano & Tamai 2016

K. Avila 2013



Bottin & Chaté 1998

Previous studies: discontinuous
146 The European Physical Journal B
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Fig. 4. Time-averaged turbulent fraction vs. coupling parame-
ter in the coupled map model. (a) k = 1 (continuous transition)
hmi goes continuously to zero at "c ' 0.171. Inset: log-log plot
showing the algebraic decay of hmi. (b) k = 0.5 (discontinuous
transition) hmi jumps to zero at "c ' 0.64. The dashed line
indicates the metastable states observed below threshold.

3 Defining a threshold in plane Couette flow

The brief description, given in Section 1.1, of the various
regimes observed in plane Couette flow suggests the ex-
istence of a threshold Reynolds number Rc below which
all turbulence eventually dies out, and above which sus-
tained disordered regimes may be observed. It is also clear
from the previous section that this definition coincides
with that of "c in our minimal model for spatiotempo-
ral intermittency. In terms of the total phase space of the
system, no chaotic attractor exists below threshold. This
is equivalent to saying that the laminar flow is the global
attractor of the system below threshold only if there does
not exist any stable solution other than the laminar flow.
Despite its simplicity, the above definition has only

been investigated quantitatively recently [10]. One of
its inherent problems is that it implicitly refers to
the behavior of an infinite system observed over in-
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Fig. 5. Mean turbulent fraction vs. Reynolds number for plane
Couette flow. Points linked by the thick solid line correspond
to R values at which turbulence “never” dies out (tmax of the
order of 600 s). The points linked by the dashed line were esti-
mated from the metastable plateaus characterizing the weakly
repelling nature of the intermittent phase below threshold (see
Fig. 6a). The limit value Ru marks (very approximately) the
limit of existence of these plateaus.

finitely long periods. In practice, one always has to deal
with finite-size systems and finite observation times, al-
though such size eÆects can usually be accounted for,
and rather safe extrapolations to the infinite-size limit
can be made. In our experimental system, for exam-
ple, one can measure m(t) (defined here as the total
surface occupied by turbulent regions over Lx £ Lz)
and choose a maximal duration tmax past which turbu-
lence is declared to be “sustained”. This procedure yields
an eÆective threshold Rc(tmax), which should converge to
some limit value, as tmax ! 1. Finite-size eÆects could
also be estimated in the same way, ultimately leading to
the actual threshold value.

Unfortunately, this approach is too tedious to be fol-
lowed completely. One can, however, at a fixed system size,
choose a single large value of tmax (say, tmax = 600 s),
and record hmi for the R values for which disorder was
sustained up to tmax. Figure 5 shows the results for our
experiments. Remarkably, the recorded values of hmi de-
crease only slightly with R and suddenly jump to zero at
some eÆective threshold around Rc ' 323± 2. This indi-
cates that the transition is discontinuous, a fact confirmed
by our other experiments.

There exist better ways to estimate the threshold and
to determine the nature of the transition. They have been
explored in detail for simple models of spatiotemporal in-
termittency (see, e.g. [17,18]). At the experimental level,
one is more constrained, but meaningful protocols can
be followed. As explained below, they are intrinsically
statistical and involve determining probabilities, expecta-
tion values, etc., from an ensemble of similar experiments.
We now present these results and discuss them in detail

Rec = 323 Rec = 324

Rec

Duguet et al. 2010

6 Y. Duguet, P. Schlatter and D. S. Henningson
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Figure 3. Turbulent fraction FT as a function of Re. The dotted line corresponds to the value
at equlibrium. The solid line corresponds to the turbulent fraction of the spots at nucleation
time.

as an order parameter and Re is associated to the temperature of the system. The results
above clearly support a discontinuous (first-order) phase transition near Rec ∼ 324 and
a continuous (second-order) transition to uniform turbulence around Re = 400. Even if
discontinuity of FT near Rec occurs in principle only at the thermodynamic limit, the
rounding-off is expected to scale like L−2 and thus to be weaker for larger and larger
domains (Imry 1980). This singularity is linked to the nucleation of growing turbulent
spots and corresponds to the minimal width of the resulting turbulent stripes. The slow
increase in FT with Re illustrates a weakening of the anisotropic mechanisms limiting
the propagation of the laminar/turbulent interfaces. The analogy with first-order phase
transition also implies a finite correlation length (Binder 1987) between nucleating spots,
which we can estimate to be of the order of the wavelength of the turbulent stripes.

3. Localised disturbances

Given the role of growing turbulent spots in the formation of banded patterns and
the finite correlation distance mentioned above, we investigate now the dynamics of a
single localised disturbance free from any mutual interaction. We focus here on the val-
ues of Re for which turbulent bands form, and we refer to the description by Lundbladh
& Johansson (1991) and by Tillmark & Alfredsson (1992) for larger values of Re. The
numerical domain is the same as in Section 2 and we trigger spots using a localised
initial condition. The very large size of the domain ensures that the growing spot (at
least in the early stage of its spatial development) is not affected by the ’neighbours’
resulting from the periodic boundary conditions. The initial condition is similar to that
used by Lundbladh & Johansson (1991), but without the imposed spanwise symmetry;
the flow outside a circle of radius 10h is initially strictly laminar. The growth of a spot at
Re = 350 is visualised in Fig. 4, using the streamwise velocity in the midplane y = 0, and
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