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Cascade phenomenon in turbulence

Kolmogorov’s Theory of Turbulence Good agreement with many experiments
and simulations
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limit, suggesting a singular limit in fluid equations. " Kaneda and Goto, 2002

Describe the cascade phenomena of the inviscid invariant (energy, enstrophy, etc.)
in terms of solutions of a hydrodynamic equation.




3D Euler equations

u(x,t): velocity field w(x,t): vorticity field (x,t) € R® x R

Euler equations for the inviscid and incompressible flows:

&—%—j—k(u Viw=wVu, w(x,0)=wo(x)=V Xug
. 1 Ty
Biot-Savart formula: u(w,t) = —— ’ ’3 X w(y, t)dy
L —Y

The quadratic term wVwu is rewritten by an operator form
D(w)w, in which the symmetric part of the matrix Vu.

D = % (Vu + (Vu)")

Thus we rewrite the Euler equation in a closed form of w:

Dw

T = D(w)w



Constantin-Lax-Majda model

Properties of the operator D:

e It is a singular integral operator.

e It is represented by the convolution of w with a kernel

homogeneous of degree —3, the spacial dimension.

Hilbert transform: a 1D analogue of the operator D(w)

H(w) = lpv /_OO “(y) dy.

The quadratic term H(w)w is a scalar 1-D analogue of
the vortex stretching term D(w)w.

Constantin-Lax-Majda (CLM) equation (1985):

Ow = H(w)w

P. Constantin, P. D. Lax, and A. Majda. Comm. Pure Appl. Math.,Vol. 38, No. 6, pp. 715-724, 1985.



gCLMG model (Okamoto, S-, Wunsch)

Generalized Constantin-Lax-Majda-DeGregorio equation (gCLMG eq.)

é%w—%aywx——u%u::O,vxzzﬁhuJ

{ Advection ter\rﬂ { Vortex stretching teh

a € IR + Periodic Boundary Condition
(DeGregorio 1990, 1996; Okamoto, S-, Wunsch 2008,2014)

Function spaces:

L%ﬂsz{f|feﬁ«wmx _:ﬂmm:m},

HY(SY)/R = {f | f= i(an cosnx + by, sinnx), i(ai + b2 )n?* < oo},
n=1

n=1

H. Okamoto, T. Sakajo, and M.Wunsch. Nonlinearity,Vol. 21, pp. 2447-2461,2008.



Existence of a unique solution

Existence of a unique local solution

" Theorem (OSW, 2008) Let a € R be given. For all wg € H(S!)/R, there |
exists a 7" depending on a and ||wp . ||z2 such that a unique solution

w € C([0, T H (87)/R) N C([0,T]; L*(S")/R)

| exists with w(x,0) = wo(x)

A criterion for global existence

( Theorem (OSW, 2008) Suppose that w(-,0) € H'(S1)/R, that solution exist |
in [0,7), and that

T
/ |Hw(-, )| dt < oc.
0

Then the solution exists in 0 <t < T + ¢ for some 0 > 0.
\_ J

* It 1s relevant to Beale-Kato-Majda criterion for the 3D Euler egs.

* It 1s difficult to prove the criterion for the local solution.



Blow-up or global existence? & Invariant quantity
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Conjecture (OSW, 2014) There exists an 0 < a. < 1 such that solutions to
gDG eq. exist global in time if a. < a < 0o (or a. £ a < o0) and that blow-up
occurs if a < a. (or a < a.).

Existence of inviscisd invariant quantity
[Proposition (OSW, 2008) If —c0 < a < —1, then ||w(-,t)||Lr = |w0(-)HLp,}

where a = —p.

a = —2 = the turbulent flow with the cascade of the enstrophy, i.e. ||w(-,t)|,
is expected.



Existence of global solution

A criterion for global existence cf. Beale-Kato-Majda criterion for the 3D Euler egs.

(Theorem (OSW, 2008) Suppose that w(-,0) € H'(S!)/R, that solution exist |
in [0,7), and that

T
/ |Hw(-, )| peedt < o0,
0

Then the solution exists in 0 < ¢t < T + ¢ for some 0 > 0.
\ J

Conjecture (OSW, 2014) There exists an 0 < a. < 1 such that solutions to
gDG eq. exist global in time if a. < a < 0o (or a. < a < o0) and that blow-up
occurs if a < a. (or a < a;).

Existence of inviscisd invariant quantity

Proposition (OSW, 2008) If —oc0 < a < —1, then |[|w(-, t)||zr = [[wo()] Lr,
where a = —p.

a = —2 = the turbulent flow with the cascade of the enstrophy, i.e. ||w(:,1)]||,
is expected.



A hydrodynamic model for turbulence

Viscous term + Random forcing  v: the (model) viscous coefficient

[ Ow + avwy, — Vpw = Vwye + f, v >0 j

Two Choices of random forcing

e A Winer process, whose Fourier coefficient f(k,t) with the large-scale
wavenumbers £ = +1 are set to Gaussian, o-correlated-in-time, and inde-
pendent random variables with zero mean. =— Stochastic PDE.

e The forcing functions f are regarded as random variables defined on a
certain probability space (2. = Random PDE.

RPDE
Random variable on
zf a probability space
T gt sam?(e. golutioy
Distribution

S_ = % Wiener of initial condition
process



SPDE: Evolution of a solution (a=-2)
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¢ Appearance/disappearance of
moving sharp spikes
(singularities)

¢ Check if the scaling laws of
enstrophy cascade is observed
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T. Matsumoto and T. Sakajo. Phys Rev E,Vol. 93, p. 053101, 2016.



SPDE: Energy (Time averaged)
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film experiments (Tran et al. 2012)

¢ The inertial range appears and it expands as v—0.
¢ A deviation from k-3 (cf. Kraichnan-Leith-Batchelor theory)




SPDE: Enstrophy flux
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Simulation Chen et al. 2003:

¢ - Aplateau region (constant enstrophy flux) is observed.

¢ - Numerical evidence of enstrophy cascade.
¢ (NQ) It is difficult to compute higher-order statistics for SPDE
¢ (NG) Mathematical analysis is not easy. (Existence of invariant measure, 2023)

T. Matsumoto & T. Sakajo, PRE 2016



RPDE: random gCLMG eq (S.-, Tsuji ’23)

The gCLMG equation with random forcing function on a probability space

Wt + VW, — Vpw = Vwey + f, v = H(W)

w(0,2) = wo(x), periodic boundary condition on St = R/(27Z).

Purpose:

e Global well-posedness of the viscous gCLMG equation with (deterministic)
forcing functions.

e Existence of a stochastic process w(t) for random initial data and random
forcing functions.

e Investigate statistical properties of solutions using the Galerkin approxi-
mation with generalized Polynomial Chaos (gPC).

Function space:

X7 the set of continuous functions from [0, 7] to H™.

27
lul|xm = sup |Ju(t)||gm H™ = {ueHm(Sl) '/ u(:c)da:_()}
0St<T 0

Y.Tsuji and T. Sakajo. Nonlinearity to be published, 2023



Definitions of solutions

Definition. Let m € N and 0 < T' < oo.

e For the initial data wy € H™ and the forcing function f € X7, w € X7
is called the mild solution to the gCLMG equation, if

w(t) = e wy + /0 eV (t=9)5 {—a(vw).(s) + (1 + a)(uzw)(s) + f(s)} ds

holds in H™ for t € [0, T], where e’*® = F~Lle=tn" F for ¢ > 0 represents
the heat semi-group.

e For the initial data wy € H™ 2 and the forcing function f € Xg‘”, we
call w € C([0,T]; H™) N CH((0,T); H™) N C((0,T]; H™+2) is the strong
solution, if the gCLMG equation holds in H™.

e For the initial data wy € H™ and the forcing function f € X7, w € X7
is said to be the global mild solution, if w|jy 7 € X7 for any 0 < T < o0

is the mild solution to the gCLMG equation for the initial data wy € H™
and the forcing function f|j 7 € X7



Mathematical Results

0 Existence of a unique mild solution

Theorem. Let a € R, v > 0 and m € N. Suppose that f € X7 and wg € H™.
Then, there exists 1" > 0 such that the gCLMG equation has a unique mild
solution w € X7

o0 Continuity of solution with respect to the initial data and the forcing

~
rTheorem. Let 0 <T < o00,a € R,v > 0and m € N. Suppose that fi, fo € X"

and wo1, w2 € H™. Suppose that w; € X7, i = 1,2 represents the mild solution
of the gCLMG equation for the forcing function f; € X7 and the initial data
woi € H™. Then, there exists a constant C(a, v, T, w1 xm, [|wa][xm) > 0 such
that the following inequality holds.

\ Jwi — wol|xm = C([[f1 — fallxm + [wor — wo2l| gm )- )

0 A priori estimate (the solution remains bounded)
. )
- Lemma. Leta=-2,v >0, meN, f € X7 and wy € H™. Suppose that there

exists a classical solution w € C*([0,T]; H™) N C([0,T]; H™12) to the gCLMG
equation for any 7' > 0. Then the solution w satisfies the following estimate.

lwllXp = C(m, v, T)(Pra(llwoll3n ) + @ua (Il 155));

where P,,(x) and Q,,(z) denote polynomials of degree 3m having non-negative
coefficients that are independent of v, T', wy and f.




Mathematical Results

o Existence of a unique global solution

-
Theorem. Let a = —2, ¥ > 0 and m &€ N. Suppose the forcing functon f € X

and the initial data wy € H™. Then there exists a unique mild solution w € X™
to the gCLMG equation globally in time. Moreover, for any 1" > 0, the solution
satisfies the following estimate.

lwllxp = Clm, v)(Pr(lwoll i) + @Il f1x5)),

where P, and (),, are polynomials of degree 3m with non-negative coefficients.
\_

J

o Existence of a unique global stochastic process

‘Theorem. Let a — —2, v > 0 and m € N. For a given probability space
(Q, F, P), we introduce random variables f : Q@ — X and wy : Q@ — H™
saisfying f € NS, LP(; X) and wy € NS, LP(Q; H™) for any 7' > 0. Then
there exists a stochastic process w : 2 — X! uniequly such that w1 €
L?(Q; X7) for 0 < T < oo, and for any n € , w" = w(n) € X is a mild
\Solution to the gGLMG equation.

We are going to compute the stochastic process numerically to observe its
statistical properties.




Galerkin approximation

Random variable

7 : Q) — R%: random variable
- . — = (£ for n € Q.
f:R* — H™: measurable function f(77) f( (77)) d

(R4, B(RY), P?): the space of the pushforward measure of Z.
= The global mild solution w(t) € L2, (R% H™) exists for any ¢ = 0

The Galerkin approximation (the gPC expansion

The pseudo spectral approximation in Hy,: {e,(z) = €™*/27} < Fourier series

The generalized Polynomical Chaos expanstion in L%,: {®,,(Z)} <Orthogonal
polynomials

The projection Py ar := L*(; H™) — L*(Q; H™) of the function w(t,z,n) €
L?(Q; H™) is given by

Mt z,n) = Py prw(t, x,m) S‘ S‘ (t,n,m)e"™*®,,(Z(n)),

m=0 |n| <N
here E o [((t, ), en(2)) 12 ()
O(t,n,m) = P ’EZPZ’ [(g?n] miAJl



Computation of Averages

The gPC expansion of the solution

w(t,x,n) S‘ S‘ (t,n,m) m@m(z(n))

m=0n=—N
The average of the solution N
Elu](tr) = > @t n,0)e" Eps (@)
n=—N

The average of the enstrophyv spectra

ElJwll3)( k) = 5 3 (4. m) PEpz (@3,

The average of the p-th moment N

MP[W](tar) — E[‘W(tﬂ“, ')|p] w(t,r,m) == Epz [Egi&)g?m()] _ Z &(t, n, m)einr

Molw](t,r) = ) @(t,r,m)@(t,r,ma)Epz[@m, P,

My [w|(t,r) = > &(t,r,m)a(t, r, ma)a(t, r,ms)D(t, 7, ma)Epz [P, Py Prrs P, |

mi 7m27m37m4:0

A single numerical computation yields the statistical property of the distribution!




Evolution of the average

() E[w] (t’ x) Random forcing
03 | | | et 2) =001 x (2Z(n) — 1) sinz.

e /(n) ~ the uniform distribution on [0, 1].

o $,,(7): the Legendre polynomials.

steady state

The evolution

0 2n
" e The viscous coefficient: v = 1.0 x 1073.
(b) Close-up near the pulse
03 | (=2 | e The solution tends to be a stationary
[=12.5 - state with two peaks at © = 0 and 7.

————————— t=25.0 -----
steady state

e It is an invariant distribution of M3*.

e The solution at T, = 237.5 is used as
the steady state to compute statistical
quantities.

——
==
-
-
-
-
-

-03 1




Average of Solutions for various v

(a) E[w](Ts, x) | (b) Elw.|(Ts, z) |
0 L A J
v=1.0x 1072
v=1.0x 1077 e
v=1.0x 1074 ——
40
0 on 0 on
(©) Elu(Ty, 2) | (162 Elug](Ts, )




Energy and enstrophy spectra

(a)
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e The average of the energy spectra.

e The decay rate in the inertial range

e The dimensional analysis: (u(k)) ~ k2.

E[ul3:](T3, )

10 100 1000
wave number

lies in the range of k=3 and k—*.

®) E[Jw]3:)(Ts. k)

1x107
1x10710 |
1x107° |

1x10720 |

10 100 1000
wave number

e The average of the enstrophy spectra.

e The decay rate in the inertial range
lies between k~! and k2.

e The dimensional analysis: (@W(k)) ~ k~1.

Good agreement with the scaling laws of the energy spectra for SPDE




Structure function Sp [u] (7“) — <(u(t7 T+ T) — u(t7 x))P>

13D turbulence : isotropic, homogeneous, statistically steady

Structure functions for the gCLMG equation

Local p-th order structure function: - ime=0.0

Sp[w](t, X, 7“) = EHwn(t, T+ 7“) . wn(t7 m)lp] 0.4

0.2

Splul(t,z,r) =Elju"(t,x + 1) —u"(t,2)[F]

0.2

wilx)

e The steady distribution
* The pulse center wonders uniformly

0.4

-0.6

The p-th order structure function: x

Splw] (1) = Ey[Splw](Ts, -, 7)]
:/O WSp[w](TS,:U,T)d:B ~ > Spwl(Ts, @n, ),

Dimensional analysis Splw](r) ~ 1P, S,lul(r) ~rP (r < 1)
Splw](r) o= rG=P)/3 Sy [u](r) = B2 (r 2 1)
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The scaling laws deviate from the dimensional analysis, showing intermittency




Intermittency and singular limit

Theorem by Fricsch U. Frisch. Turbulence.The Legacy of A. N. Kolmogorov. Cambridge University Press, 1996.

(" Suppose that

e the structure function of even order for the flow velocity v satisfies Sy, |[v](7) ~
r<2r over the inertial range

e the inertial range extends with v — 0

e for a certain p € N, the two consecutive exponents satisfies (2, > Cop2.

L Then the maximum velocity diverges as v — 0.

The numerical computation indicates that ... The vorticity function diverges as v—0.
Elw](T¢, x)

Salw](r) ~ 2,
S

alw](r) ~ e SN
(o = 0.54 > ¢4 = 0.05

+The inertial range expands




M The gCLMDG equation is an interesting one-dimensional mathematical model
bringing us useful insights into the balance of nonlinear and linear terms in fluid
equations, providing a one-dimensional hydrodynamic model for “turbulent” flow
with the cascade of inviscid invariants.

M SPDE: The turbulent flow is generated by a randomly moving pulse with sharp
peaks, yielding the cascade of the enstrophy (the inviscid conserved quantity).

M RPDE: We have shown mathematically the existence of a stochastic process that is
defined from the global solution to the gCLMG equation with uniformly distributed
random forcing.

M Numerical computations of the stochastic process indicate the existence of a steady
distribution of solutions with the enstrophy and energy cascades relevant to the pulse
turbulence. We find the statistical laws of the structure functions with intermittency.

M Future work: Mathematical analysis of the steady distribution.
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