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I Question — what happens with the normalized energy dissipation

〈εν〉 :=
ν

T

∫ T

0

∫

Ω

|∇u(x, t)|2 dx dt in the limit ν → 0?

I In 3D flows evidence suggests that D := 〈εν〉L
(u′)3 −−−→

ν→0
C > 0

=⇒ the zeroth law of turbulence

Kaneda et al. (2003)

I For 1D Burgers equation (Soluyan & Khokhlov, 1961)

1

2L

∫ L

−L
ν|∂xu(x , t)|2 dx −−−→

ν→0

(∆u)2

12t
> 0, ∆u jump across the shock
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I 2D Navier-Stokes system in vorticity form
on the periodic domain Ω := [0, 1]2

∂twν + ∇⊥ψν ·∇wν = ν∆wν in (0,T ]× Ω

−∆ψν = wν in (0,T ]× Ω

wν(t = 0) = φ in Ω

I Enstrophy dissipation (viewed as function of the initial condition φ)

χν(φ) :=
ν

T

∫ T

0

∫

Ω
|∇wν(t, x;φ)|2 dx dt =

2ν

T

∫ T

0
P (wν(t, x;φ)) dt

where P(wν) := 1
2

∫
Ω |∇wν |2 dx is the palinstrophy

I Question — What happens in the inviscid limit?

χν(φ) −−−→
ν→0

C
?
> 0
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I Batchelor’s theory of 2D turbulence (1969) assumed there is
enstrophy dissipation anomaly, i.e.,

χν −−−→
ν→0

C > 0

I However, Tran & Dritschel (2006) argued that

χν ≤ C [− ln(ν)]−
1
2 , where C = C (φ,T ) as ν → 0,

i.e., the enstrophy dissipation vanishes in the inviscid limit

I Filho, Mazzucato & Nussenzveig Lopes (2006) proved this rigorously,
ruling out anomalous enstrophy dissipation in 2D flows

I Question — how slowly χν can vanish in the inviscid limit ν → 0

I Jeong & Yoneda (2021) proved there exists a family of initial data φν

such that

χν ≥ Cν [− ln(ν)]
1
2 as ν → 0 (a lower bound)
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I A related result

χν(φ) ≤ 2

T
‖φ‖L2(Ω) ‖w(T ;φ)− wν(T ;φ)‖L2(Ω)

where w(t;φ) = w0(t;φ) is the solution of the inviscid Euler system
(ν = 0) with the same initial data φ

I Ciampa, Crippa, & Spirito (2021) showed that (M := ‖ϕ‖L∞(Ω))

sup
t∈[0,T ]

‖w(·, t)− wν(·, t)‖Lp(Ω) ≤ C M1− 1
p ν

e−2CT

4p ≈ C (T ) να(T )

I This estimate implies an upper bound on χν(φ)!
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I Question — given T , ν > 0, what is the largest possible enstrophy
dissipation χν?

I Find the optimal initial data qφTν by solving the optimization problem

(?) qφTν := argmax
φ∈S

χν(φ) where

S :=

{
φ ∈ H1(Ω) :

∫

Ω
φ(x) dx = 0, P(φ) :=

1

2

∫

Ω
|∇φ(x)|2dx = P0

}

I Solve problem (?) in the limit ν → 0

• with fixed P0 = 1

• and for different T
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I Locally optimal initial conditions qφTν found using projected discrete
gradient flow as qφTν = lim

n→∞
φ(n), where

{
φ(n+1) = RS

(
φ(n) + τn∇χν

(
φ(n)

) )
, n = 1, 2, . . .

φ(1) = φ0

in which
I ∇χν (φ) is the gradient (sensitivity) of the objective functional χν(φ)

I RS is the retraction used to enforce constraint P(φ) = P0

I τn is step size along the ascent direction at the nth iteration

I φ0 is the initial guess for the initial condition
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I The gradient ∇χν (φ) is determined by solving the adjoint system
backward in time

−∂tw∗ν −∇⊥ψν ·∇w∗ν + ψ∗ν − ν∆w∗ν = −2ν

T
∆wν in (0,T ]× Ω

∆ψ∗ν = ∇⊥ · (w∗ν ∇wν) in (0,T ]× Ω

w∗ν (t = T ) = 0 in Ω

I Then, the L2 gradient is computed as

∇L2
χν(x) = w∗ν (0, x), x ∈ Ω

I Finally, the Sobolev gradient ∇χν (φ) = ∇H1
χν is obtained by solving

the elliptic boundary-value problem

[
Id−`2 ∆

]
∇H1

χν = ∇L2
χν in Ω
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Computational Algorithm

• set P0 and T
• provide initial guess for the initial data φ0

1. solve the Navier-Stokes system for {wν , ψν}
2. solve the adjoint Navier-Stokes system for {w∗ν , ψ∗ν}
3. use wν and w∗ν to compute ∇L2χν

4. determine the Sobolev gradient ∇H1
χν

5. update the initial data while enforcing the palinstrophy
constraint

φ(n+1) = RS
(
φ(n) + τn∇H1

χν(φ(n))
)

• iterate 1. through 5. until convergence, i.e. until

χν(φ(n+1))− χν(φ(n))

χν(φ(n))
< ε
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Local maximizers obtained by solving Problem (?) with ν = 2.24× 10−6 and T = 0.179.
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Envelopes obtained by maximizing over
branches with fixed T and ν
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Dependence of the maximum
enstrophy dissipation normalized by
the upper bound qχT

ν /
[
C (T ) να(T )

]

on the viscosity ν for different T

Data-fitted exponents α̃ = α̃(T )
in the upper bound C (T ) να(T ) as

functions of the length T of the
time window.

The upper bound is saturated if qχT
ν /
[
C (T ) να(T )

]
≈ 1 for all ν
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I Considered the vanishing of the enstrophy dissipation χν in the inviscid limit
ν → 0 in 2D Navier-Stokes flows

I Solved a family of PDE-constrained optimization problems to determine
flows maximizing the enstrophy dissipation qχT

ν for different T and ν

I found 6 branches of locally maximal flows, each revealing a distinct
mechanism for enstrophy dissipation

I The dependence of the maximum enstrophy dissipation qχT
ν on ν saturates

the a priori estimate due to Ciampa, Crippa, & Spirito (2021)

qχT
ν ≤ C M1− 1

p ν
e−2CT

4p ,

including an exponential time dependence of the exponent!

I Thus, the bound is sharp and cannot be fundamentally improved.

I Future work: dissipation anomaly in 3D

I Find maximum energy dissipation in the inviscid limit ν → 0
I No a priori estimates available ....
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I Navier-Stokes system (Ω = [0, L]d , d = 2, 3)





∂u

∂t
+ (u ·∇)u + ∇p − ν∆u = 0, in Ω× (0,T ]

∇ · u = 0, in Ω× (0,T ]

u = u0 in Ω at t = 0

Periodic Boundary Condition on Γ× (0,T ]

I The Big Question:

Given a smooth initial condition u0, does the Navier-Stokes system
always admit smooth solutions u(t) for arbitrarily long times t?

(solutions which are not “smooth” are not physically meaningful ...)

I One of the Clay Institute “Millennium Problems” ($ 1M prize!)
http://www.claymath.org/millennium/Navier-Stokes Equations
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I What could go wrong with solutions to the Navier-Stokes equation?

I Consider its vorticity formulation (ω = ∇× u)

∂ω

∂t
+ (u ·∇)ω =

dω

dt
= ν∆ω + (∇u)ω︸ ︷︷ ︸

“vortex stretching”

I Velocity u is obtained from vorticity using the Biot-Savart kernel G

u = ∇∆−1ω =

∫

Ω

G(·, x′)ω(x′) dx′ = G ∗ ω

I The vorticity equation has a quadratic source term (assume ν = 0)

dω

dt
= [∇(G ∗ ω)] ω

I What could this imply?
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I Consider a (very) simple ODE model problem

dy

dt
= y2, y(0) = y0 with solution y(t) =

y0

1− y0 t

I The solution y(t) becomes unbounded
(“blows up”) as t → t0 = 1

y0

0t

0y

y(t)

t

I The equation is not satisfied at t = t0 and
the solution is not defined for t ≥ t0
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I Another simple model problem — inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0 for t > 0, x ∈ R,

u(0, x) = φ(x) for x ∈ R

with (implicit) solution u(t, x) = φ(x − u(t, x) t)

I The solution u(t, x) develops a shock and becomes non-differentiable
at time t → t0 = −1

minx
dφ(x)
dx

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

I The equation is not satisfied at t = t0 and the solution is not defined
(in the “classical” sense) for t ≥ t0

I it may be however defined for t ≥ t0 in a “weak” (integral) sense
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I Can such singular behavior arise in the Navier-Stokes system
in finite time?

I Who cares?
I Well, if its solutions can become singular, then the Navier-Stokes

system is not a correct model for viscous incompressible fluids and
must be amended (by modifying the viscous terms)

I 2D Case
I Existence theory complete — smooth and unique solutions exist for

arbitrary times and arbitrarily large data

I 3D Case
I Weak solutions (possibly nonsmooth) exist for arbitrary times

I Classical (smooth) solutions (possibly nonsmooth) exist
for finite times only

I Possibility of “blow-up” (finite-time singularity formation)
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The Enstrophy Condition

I A Key Quantity — Enstrophy

E(t) ,
∫

Ω
|∇× u|2 dΩ (= ‖∇u‖2

2)

I Smoothness of Solutions ⇐⇒ Bounded Enstrophy
(Foias & Temam, 1989)

max
t∈[0,T ]

E(t) <∞ ???

?

t

E(t)

E(0)

t

NaN

0

I Can estimate dE(t)
dt using the momentum equation, Sobolev’s

embeddings, Young and Cauchy-Schwartz inequalities, ...
I Remark: incompressibility not used in these estimates ....
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I Bounds on the rate of growth of enstrophy — general form

dE
dt

< C Eα, C > 0, α = α(d) > 0

I Energy equation (K(t) ,
∫

Ω u2 dΩ)

dK
dt

= −2νE

K(t)−K(0) = −2ν

∫ t

0
E(τ) dτ =⇒

∫ t

0
E(τ) dτ ≤ 1

2ν
K0

I When α <= 2, by Grönwall’s inequality: E(t) ≤ E0 exp
[
CK0
2ν

]

=⇒ Enstrophy bounded for all times

I When α > 2 , no finite a priori bound on enstrophy ...
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I 2D Case:
dE(t)

dt
≤ C 2

ν
E(t)2

I Grönwall’s lemma and energy equation yield ∀t E(t) <∞
I smooth solutions exist for all times

I 3D Case:
dE(t)

dt
≤ 27C 2

128ν3
E(t)3

I upper bound on E(t) blows up in finite time

E(t) ≤ E(0)√
1− 4CE(0)2

ν3 t

I singularity in finite time cannot be ruled out!
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The Ladyzhenskaya-Prodi-Serrin (LPS) Conditions

I The solution u(t) is smooth and satisfies the Navier-Stokes system in
the classical sense provided that

u ∈ Lp([0,T ]; Lq(Ω)), 2/p + 3/q = 1, q > 3

I Thus, should a singularity form at some finite time 0 < t0 <∞, then
necessarily

lim
t→t0

∫ t

0
‖u(τ)‖pLq(Ω) dτ =∞, 2/p + 3/q = 1, q > 3,

where ‖u(t))‖Lq(Ω) :=
(∫

Ω |u(t, x)|q dx
) 1

q

I In the limiting case with q = 3, the corresponding condition for
regularity is (Escauriaza, Seregin & Sverak, 2003)

u ∈ L∞([0,T ]; L3(Ω))
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On the Nature of Possible Blow-up

I As the hypothetical blow-up time t0 is approached ...

•
lim
t→t0

E(t) =∞ however

∫ t0

0

E(τ) dτ <∞

•
lim
t→t0

∫ t

0

‖u(τ)‖pLq(Ω) dτ =∞, 2/p + 3/q = 1, q > 3,

however ∫ t0

0

‖u(τ)‖
4q

3(q−2)

Lq(Ω) dτ <∞, 2 ≤ q ≤ 6

I Thus, the blow-up, should it occur, must be very gentle ...
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Problem of Lu & Doering (2008)

I Can we actually find solutions “saturating” a given estimate?

I Lu & Doering (2008) constructed vector fields maximizing dE(t)
dt

instantaneously by solving the problem

max
u∈H2(Ω),∇·u=0

dE(t)

dt

subject to E(t) = E0

where
I

dE(t)

dt
= −ν‖∆u‖2

2 +

∫

Ω

u ·∇u ·∆u dΩ

I E0 is a parameter

I Numerical solution using a gradient-based descent method
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[
dE(t)
dt

]
max

= 8.97× 10−4 E2.997
0

vorticity field (top branch)

The instantaneous estimate dE(t)/dt ≤ cE(t)3 is sharp, up to prefactor!
(Lu & Doering, 2008)
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0 0.002 0.004 0.006 0.008 0.01
50

100

t

E
(t
)

0 0.002 0.004 0.006 0.008 0.01

0.02

0.04

0.06

D
Π
(t
)

E0 = 100

(a) t = 0.0 (b) t = 1.75× 10−3

(c) t = 8.63× 10−3 (d) t = 0.198

The extreme initial rate of growth of enstrophy is rapidly depleted
(Ayala & Protas, 2017)
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I For blow-up to occur, growth of enstrophy at the a rate dE/dt ∼ Eα,
2 < α ≤ 3 must be sustained over a finite time window

I For E0 →∞ the extreme states are pairs of axisymmetric vortex rings
I they have zero “swirl”(azimuthal velocity component), so are

effectively 2D structures

I globally well-posed Navier-Stokes flows (Gallay & Sverák, 2015)

I relation dE/dt = CE3 satisfied only instantaneously, followed by
immediate depletion of enstrophy production

I If finite-time blow-up does occur in Navier-Stokes flows, it is unlikely
to be associated with initial data such that dE/dt ∼ E3 at any time

I Can we construct “subextreme” vortex states which can sustain a
suboptimal rate of growth dE/dt ∼ Eα, 2 < α < 3 over times
sufficiently long to produce blow-up?
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I Maximize enstrophy at time T , with E0 := E(u0) > 0 fixed, to see if
ET (u0) := E(u(T ; u0)) can become infinite

Problem (1)

max
u0∈QE0

ET (u0), where

QE0 =

{
u0 ∈ H1(Ω) : ∇ · u0 = 0,

∫

Ω

u0 dx = 0, E(u0) = E0

}
,

subject to:





∂u

∂t
+ (u ·∇)u + ∇p − ν∆u = 0, in Ω× (0,T ]

∇ · u = 0, in Ω× (0,T ]

u = u0 in Ω at t = 0

Periodic Boundary Condition on Γ× (0,T ]

I A formidable, but solvable, PDE optimization problem
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I Maximize the Ladyzhenskaya-Prodi-Serrin functional with q = 4, p = 8

ΦT (u0) :=
1

T

∫ T

0

‖u(τ)‖8
L4(Ω) dτ

Problem (2)

max
u0∈LB

ΦT (u0), where

LB =

{
u0 ∈ H3/4(Ω) : ∇ · u0 = 0,

∫

Ω

u0 dx = 0, ‖u0‖L4(Ω = B

}
,

subject to:





∂u

∂t
+ (u ·∇)u + ∇p − ν∆u = 0, in Ω× (0,T ]

∇ · u = 0, in Ω× (0,T ]

u = u0 in Ω at t = 0

Periodic Boundary Condition on Γ× (0,T ]

I Solutions sought in H3/4, the largest Sobolev space with Hilbert structure
embedded in L4
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I Local maximizers found via discretized gradient flow

u(n+1)
0;E0,T

= PQE0

(
u(n)

0;E0,T
+ τn∇ET

(
u(n)

0;E0,T

) )
,

u(1)
0;E0,T

= u0,

where:

I ∇ET (u0) is the gradient of the objective functional ET (u0) with
respect to the initial data u0

I step size τ (n) is found via arc minimization and
the projection on the constraint manifold QE0 is
given by

PQE0
(u0) =

√
E0

ET (u0)
u0

n

d
n

n+1

= {|| x||2 = E0}
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I How to ensure the required smoothness of the gradients ∇ET ∈ H1 ?

I Defining the from adjoint system

L∗
[

u∗

p∗

]
:=

[
−∂tu∗ −

[
∇u∗ + ∇u∗

T
]

u−∇p∗ − ν∆u∗

−∇ · u∗

]
=

[
∆u
0

]
,

u∗(T ) =0

the Gâteaux differential of ET (u0) becomes E ′T (u0; u′0) =
∫

Ω
u′0 · u∗(0) dx

I Since E ′T (u0, ·) is a bounded linear functional on L2(Ω) and on H1(Ω),
the gradient can be deduced from the Riesz representation theorem

E ′T (u0; u′0) =
〈
∇L2ET (u0),u′0

〉
L2(Ω)

=
〈
∇ET (u0),u′0

〉
H1(Ω)

,

I Using the L2 inner product: ∇L2ET (u0) = u∗(0)

I Using the H1 inner product, an elliptic BVP is obtained:

[
Id − `2

1 ∆
]
∇ET (u0) = ∇L2ET (u0) in Ω
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Enstrophy E(u(t)) in function of time for E0 = 50
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—– instantaneously optimal initial data u0 = ũE0

—– initial data u0 = ũ0;E0,T optimized over [0,T ], where T = 0.2, 0.3, 0.4
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Optimal initial conditions ũE0
and ũ0;E0,T for E0 = 100

instantaneous ũE0 ũ0;E0,T with T = 0.3

(symmetric)

ũ0;E0,T with

T = 0.3 = T̃E0

(asymmetric)

Finite-time optimal initial conditions ũ0;E0,T are much less localized than
the instantaneous maximizers ũE0!
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Maximum enstrophy maxu0
E(T ) versus T for different E0
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Computational cost of one data point: O(102) hours on O(102) cores
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Maximum enstrophy maxT maxu0
E(T ) vs. E0
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(ũ
0;
E 0
,T̃

E 0
)

E0

10
2

10
3

10
4

10
2

10
3

m
ax

T
E T

(ũ
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Structure of the optimal initial data ũ0;E0,T
(E0 = 500, T = 0.017)

(a) ωx (b) ωy (c) ωz
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Time evolution of the extremal flow
(E0 = 500 and T̃E0 = 0.17)
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Maximum Sustained Rate of Enstrophy Growth dE
dt ∼ C Eα
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—– extreme trajectories with optimal initial data ũ0;E0,T

—– instantaneous maximizers ũE0
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‖u(t)‖L4 versus time t maxu0
ΦT (u0) versus T
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No evidence for unbounded growth of ‖u(t)‖L4 and singularity formation
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The optimal initial data ũ0;B,T and the final state u(T )
( B4 = 12,000 and T = 0.01)

ũ0;B,T u(T )
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Time evolution of the extremal flow
( B4 = 12,000 and T = 0.01)
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Maximum enstrophy maxT maxu0
E(T ) vs. E0
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I In the extreme flows the enstrophy E(t) and the norm ‖u(t)‖L4 remain finite
at all times

I hence, even in such worst-case scenario there is no evidence for
formation of singularity in finite time

I however, we do not know if the maximizers found are global

I the extreme behavior in the two cases is realized by entirely different
mechanisms

I the scaling of the maximum growth of enstrophy with E0 is the same in
both cases and, remarkably, the same as in 1D Burgers flows

I Open problems and on-going work

I test different values of q > 3 in the LPS criteria u ∈ Lp([0,T ]; Lq(Ω)),
2/p + 3/q = 1, and the limiting (critical) case with q = 3

I search for potential singularities in 3D Euler flows: given local
existence results in Hs(Ω), s > 5/2, maximize ‖u(T )‖Ḣ3 for different
T > 0 subject to ‖u0‖Ḣ3 = 1

I regularizing effect of noise on possible singularities
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Summary of Relevant Energy-type Estimates

Best Estimate Sharp?

1D Burgers
instantaneous

dE(t)
dt
≤ 3

2

(
1
π2ν

)1/3 E(t)5/3 Yes
Lu & Doering (2008)

1D Burgers
finite–time

maxt∈[0,T ] E(t) ≤
[
E1/3

0 +
(
L
4

)2 ( 1
π2ν

)4/3 E0

]3 No
Ayala & P. (2011)

2D Navier–Stokes
instantaneous

dP(t)
dt
≤ −

(
ν
E

)
P2 + C1

(E
ν

)
P

dP(t)
dt
≤ C2

ν
K1/2 P3/2

Yes
Ayala & P. (2013)
Ayala, Doering &

Simon (2017)

2D Navier–Stokes
finite–time

maxt>0 P(t) ≤
[
P1/2

0 + C2
4ν2K

1/2
0 E0

]2 Yes
Ayala & P. (2013)

3D Navier–Stokes
instantaneous

dE(t)
dt
≤ 27C2

128ν3 E(t)3 Yes
Lu & Doering (2008)

3D Navier–Stokes
finite–time

E(t) ≤ E(0)√
1−4

CE(0)2

ν3 t

No (???)
Kang, Yun &
P, (2020)

B. Protas Probing Fundamental Bounds in Turbulence



Introduction
On Maximum Enstrophy Dissipation in 2D Flows

Systematic Search for Singularities in Navier-Stokes Flows

The Regularity Problem for the Navier-Stokes Equation
Maximizing Growth of Enstrophy and Lp norms in Finite Time
Results

References
I L. Lu and C. R. Doering, “Limits on Enstrophy Growth for Solutions of the

Three-dimensional Navier-Stokes Equations” Indiana University Mathematics Journal 57,
2693–2727, 2008.

I D. Ayala and B. Protas, “On Maximum Enstrophy Growth in a Hydrodynamic System”,
Physica D 240, 1553–1563, 2011.

I D. Ayala and B. Protas, “Maximum Palinstrophy Growth in 2D Incompressible Flows:
Instantaneous Case”, Journal of Fluid Mechanics 742 340–367, 2014.

I D. Ayala and B. Protas, “Extreme Vortex States and the Growth of Enstrophy in 3D
Incompressible Flows”, Journal of Fluid Mechanics 818, 772–806, 2017.

I D. Poças and B. Protas, “Transient Growth in Stochastic Burgers Flows”, Discrete and
Continuous Dynamical Systems — B 23, 2371–2391, 2018.

I D. Yun and B. Protas, “Maximum Rate of Growth of Enstrophy in Solutions of the
Fractional Burgers Equation”, Journal of Nonlinear Science 28, 395-422, 2018.

I D. Kang, D. Yun and B. Protas, “Maximum Amplification of Enstrophy in 3D
Navier-Stokes Flows”, Journal of Fluid Mechanics 893, A22, 2020.

I D. Kang and B. Protas, “Searching for Singularities in Navier-Stokes Flows Based on the
Ladyzhenskaya-Prodi-Serrin Conditions”, Journal of Nonlinear Science 32, 81, 2022.

B. Protas Probing Fundamental Bounds in Turbulence



Introduction
On Maximum Enstrophy Dissipation in 2D Flows

Systematic Search for Singularities in Navier-Stokes Flows

The Regularity Problem for the Navier-Stokes Equation
Maximizing Growth of Enstrophy and Lp norms in Finite Time
Results

Special Issue of
Philosophical Transactions of the Royal Society A

“Mathematical Problems in Physical Fluid Dynamics”
Eds. C. R. Doering, D. Goluskin, B. Protas & J.-L. Thiffeault

B. Protas Probing Fundamental Bounds in Turbulence


	Introduction
	Part I
	Part II

	On Maximum Enstrophy Dissipation in 2D Flows
	Dissipation Anomaly
	Optimization Problem
	Results

	Systematic Search for Singularities in Navier-Stokes Flows
	The Regularity Problem for the Navier-Stokes Equation
	Maximizing Growth of Enstrophy and Lp norms in Finite Time
	Results


