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Vladimir Zakharov 1939 - 2023

Founding father of Wave Turbulence, Theory of Integrability and Solitons
and many other subjects.
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Bose-Einstein Condensate

In 1995, researchers from JILA (NIST/U. of Colorado) create a new state of matter predicted in
1920’s by Einstein and Bose. Cooling rubidium atoms to < 170 nK caused the individual atoms
condense into a coherent state. The graphic shows successive density snap shots.
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Nonlinear Optical Systems at INPHYNI

Left: Liquid Crystal Cell for 1D turbulence (Bortolozzo & Residori). Centre, right: Hot vapour
(R. Kaizer) and photorefractive crystal (M. Bellec & C. Michel) for 2D turbulence.
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BEC and Optical turbulence.

BEC is described by Gross-Pitaevskii (a.k.a. NLS) equation:

i
∂ψ

∂t
+∇2ψ − |ψ|2ψ = 0. (1)

where ψ is a complex scalar field.
GP equation (1) conserves two quantities with positive quadratic
parts—the energy and the total number of particles,

N =

∫
|ψ(x, t)|2dx , (2)

and the total energy,

H =

∫ [
|∇ψ(x, t)|2 +

1

2
|ψ(x, t)|4

]
dx , (3)
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Fluid properties of the GP system: Madelung
transformation

What makes the GP system to act as a fluid? There are strong parallels
and analogies between the GP model and the the classical fluids, which
could be understood by making the following change of variables called the
Madelung transformation: ψ =

√
ρ e iφ . After this transformation, the GP

equation (1) becomes very similar to the Euler equations for an ideal fluid
with density ρ and velocity u = 2∇φ:

∂ρ

∂t
+∇ · (ρu) = 0, (4)

∂u

∂t
+ (u · ∇)u = −∇ρ

2

ρ
+∇

(
2
∇2√ρ
√
ρ

)
. (5)

Hence the GP system possesses fluid-like states including randomly
moving vortices and waves, i.e. vortex and wave turbulence.
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Important structures in hydro and BEC turbulence

1. Vortices: Important in hydro and BEC/Optical turbulence. They may
have arbitrary continuous vorticity fields in classical turbulence. In
quantum turbulence, there are only infinitely thin vortices with quantised
circulation. The quantum vortices are located at lines ψ = 0 and the
circulation Γ =

∮
C u(x) d` = 2

∮
C ∇θ d` = 2[θ]C = ±4π .

2. Waves: Sound waves and Kelvin waves on vortex filaments are common
for hydro and quantum turbulence. De Broglie (matter) waves exist in
BEC/Optical systems only.
Pure vortex and pure wave turbulence are realised in the strong and weak
nonlinearity limits.
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Strong turbulence: vortex tangles

General vortex structure in strong 3D GP turbulence may be very complex
and irregular: it is usually referred as vortex tangle. In a wider context,
vortex tangle represents a typical realisation in superfluid turbulence at
zero temperature, i.e. in liquid Helium.

In what follows, we will consider the weak wave turbulence only.
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Linear wave solutions

First of all, let us consider a system with weak field, such that
|ψ|3 � |∇2ψ|, so that the nonlinear term in the GPE can be neglected.
Then the resulting linear (Schrödinger) equation has wave solutions

ψ = Ae−iωkt+ik·x,

where A = const is a wave amplitude, k = const is a wave vector, and

ωk ≡ ω(k) = k2. (6)

Quantum mechanical interpretation: De Broglie “matter waves”.
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What is Wave Turbulence?

Wave Turbulence is a non-equilibrium statistical system of many randomly
interacting waves. Kinetic equations of Wave Turbulence describe
evolution of the wave energy in Fourier space.
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Weak wave turbulence

Weak wave turbulence (WWT) refers to systems with random weakly
nonlinear waves. In WWT, waveaction spectrum nk = (L/2π)d〈|ψk|2〉
evolves according to the wave-kinetic equation (WKE):

∂tnk = 4π

∫
nk1nk2nk3nk

[
1

nk
+

1

nk3
− 1

nk1
− 1

nk2

]
×

δ(k + k3 − k1 − k2) δ(ωk + ωk3 − ωk1 − ωk2) dk1dk2dk3, (7)

where ωk = k2.
Now the invariants are: N =

∫
nkdk and E =

∫
k2nkdk.

Such wave fields contain a lot of vortices (zeroes of ψ) but they are all
”ghosts” without hydrodynamic properties!
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Basic ideas and facts in hydrodynamic turbulence

Word ”Turbulence” in Wave Turbulence is because it exhibits states
similar to the ones arising in classical turbulence, energy cascades through
scales. Further, the GPE system has properties similar to 2D turbulence –
dual cascades. Thus, we will briefly overview the basic concepts and
results in the area of classical hydrodynamic turbulence.
3D hydrodynamic turbulence, even in a statistically steady state, is far
from a thermodynamic equilibrium. It is described by the energy (or
anther invariant) flux through scales. It takes form as a sequence of
transfers between eddies of similar sizes, and called the local energy
cascade. As first suggested by Richardson, small eddies obtain the full
amount of the energy contained in larger eddies when the latter are
getting fragmented due to mutual interactions. Further, the small eddies
are breaking into even smaller ones, and so on in a self-similar way.
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The largest eddies in Richardson cascade obtain their energy from an
external mechanical forcing or a large-scale instability, whereas the
smallest vortices are damped by viscosity. The rate of the energy injection
at the largest scales is equal, on average, to the energy dissipation rate at
the smallest scales in a statistically steady state.

Energy injection

Viscous dissipation

Figure: Richardson cascade in the physical space
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Energy cascade in Wave Turbulence

The longest waves in the energy cascade obtain their energy from an
external mechanical forcing or a large-scale instability, whereas the
smallest waves are damped by viscosity (or other mechanisms). The rate
of the energy injection at the largest scales is equal, on average, to the
energy dissipation rate at the smallest scales in a statistically steady state.

Figure: Wave energy cascade in the physical space
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A k-space cartoon of the Richardson cascade is shown in the figure. In
such a representation, the eddy size roughly corresponds to 1/k = 1/|k|.
Turbulence source is at small wave numbers around kf , and the energy
cascade is in the direction of increasing k towards large dissipation wave
numbers ∼ kν .

νk k
f

Energy cascade

Energy injection Viscous dissipation

Figure: Energy cascade in the k-space
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Energy Spectrum

Energy spectrum is the main statistical quantity studied in turbulence:

E (3D)(k) =
1

2

∫
R3

〈u(x) · u(x + r)〉 e−ik·r dr

(2π)3
. (8)

The angular bracket denotes a suitable average, ensemble, volume or
space.
Turbulence is homogeneous if all averaged quantities, including the energy
spectrum, are independent of x. Respectively, in isotropic turbulence the
energy spectrum and all the other averaged quantities are independent of
the direction of the wave number k. Thus, for the homogeneous isotropic
turbulence E (3D)(k) ≡ E (3D)(k) where k = |k|.
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Super-script (3D) in E (3D) means that it is a density in 3D k-space:

1

2

〈
u2
〉

=

∫
R3

E (3D)(k) dk. (9)

For isotropic spectra the same information is contained in a 1D spectrum:
E (1D)(k) = 4πk2 E (3D)(k) which is the energy density over k = |k|,

1

2

〈
u2
〉

=

+∞∫
0

E (1D)(k)dk . (10)

hence for the physical dimension:
[
E (1D)

]
=
[
u2

k

]
= l3

t2
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Kolmogorov and Obukhov put forward a universality hypothesis: in the
so-called inertial range of scales far away from the source and the sink
turbulence, kf � k � kν , the spectrum depends only on the energy flux
through scales ε (defined via ∂tE

(1D) + ∂kε = 0), and independent from
details of the forcing or the dissipation of energy and kf and kν . Such an
independence is natural if the Richardson cascade is local, in which the
energy is transferred in many steps each involving interactions of eddies
with comparable sizes only.
This leads to a dimensional argument, where ε and k are postulated to be
the only relevant dimensional quantities in the inertial range kf � k � kν .
The dimensions of the energy spectrum and the energy flux:[

E (1D)
]

=

[
u2

k

]
=

l3

t2
and [ε] =

[
u2

t

]
=

l2

t3
, (11)
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The only combination of ε and k that yields the correct dimension of
E (1D) is

E (1D) = Cε2/3k−5/3 . (12)

This is famous KO41 spectrum, and C is the so-called Kolmogorov
constant whose cannot be deducted from the dimensional argument alone;
its experimental value is C ∼ 1.6.
Conceptually, the Richardson cascade and the KO41 spectrum are of great
importance for all turbulent systems, including the wave turbulence and
the GP turbulence.
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2D Turbulence

Let us consider a 2D flow in which motion in the third spatial direction is
suppressed either by restraining boundaries or due to presence of a strong
rotation or a magnetic field. In absence of dissipation, such a 2D flow
conserves two quadratic quantities, energy and enstrophy:

E = = 1
2

〈
u2
〉

=

∫ ∞
0

E (1D)(k)dk, (13)

Ω = = 1
2

〈
ω2
〉

=

∫ ∞
0

k2E (1D)(k)dk . (14)

where we have taken into account ω̂k = ik× ûk .
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Dual Cascade Argument (Fjørtoft’53)

Let us consider turbulence excited near a wavenumber kf and dissipated at
very small wavenumbers k− � kf and at very large wavenumbers
k+ � kf , and let there be no forcing or dissipation at wavenumbers such
that k− < k < kf or kf < k < k+, see the figure. These intervals are
called the inverse and the direct cascade inertial ranges respectively. From
(13) and (14):

η+ ∼ k2+ε+, η− ∼ k2−ε−, η ∼ k2f ε,

η+ + η− = η, ε+ + ε− = ε. (15)

So, ε+/ε = (k2f − k2−)/(k2+ + k2−)→ 0 and ε−/ε→ 1. Similarly η+/η → 0
and η−/η → 1.
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Spectra of 2D turbulence

Following the ideas of Kolmogorov and Obukhov, Kraichnan assumed that
the energy spectrum in the inverse and the direct cascade ranges is
determined by only the energy or the enstrophy flux respectively.
By a dimensional argument, he obtained for the inverse cascade range:

E (1D)(k) = Cεε
2/3k−5/3 .

The constant cannot be obtained dimensionally; numerics yield Cε ∼ 6.
To find the enstrophy cascade spectrum, we first find the dimension for η:

[η] =
[
k2
]

[ε] =
1

l2
l2

t3
=

1

t3
. (16)
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Spectra of 2D turbulence cont’d

Therefore, in the direct cascade range, assuming that the spectrum can
only depend on η and k , we have:

E (1D) = Cηη
2/3k−3 , (17)

which is Kraichnan’s spectrum. Here Cη ∼ 1.9 — a value obtained by
numerics.
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Conservation laws and cascade directions in WT

Dual cascades of 2D turbulence are of direct relevance to the GP
turbulence: like in 2D turbulence, there are two positive GP invariants, E
and N, which, as we will show now, cascade in the opposite directions.
The kinetic equation conserves the total energy:

Ė =
d

dt

∫
ωknk dk = 0. (18)

and the total number of particles (waveaction):

Ṅ =
d

dt

∫
nk dk = 0. (19)

For GPE, ωk = k2. So for Fjørtoft’s argument, we have a mapping from
2D turbulence to GPE: E → N,Ω→ E .

kf
kk kk+−

DirectInverse
Cascade of Waveaction Energy cascade

Figure: Dual cascade in weak wave turbulence
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Dual cascade in BEC

In BEC, the dual behavior has a nice physical interpretation. Consider a system in

a trap, as shown in the figure. In this setup, the forward cascade will correspond

to an energy transfer toward larger energy levels. When such an energy cascade

reaches highest available levels in the trap, it will “spill” over the potential

barrier. This corresponds to evaporative cooling, a technique used experimentally

in BEC experiments.

BEC Turbulence experiment of Navon et al.’2018.

Direct E-cascade: “evaporation”.

Inverse N-cascade: Non-equilibrium condensation.
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Kolmogorov-Zakharov spectra

KZ spectra are direct analogs of the Kolmogorov-Obukhov spectrum, and
can also be obtained dimensionally, but (provided they satisfy the locality
test) the KZ spectra are also exact power law solutions

nk = Akν

of the wave-kinetic equation. First, we will obtain the KZ spectra by
considering physical dimensions. A disadvantage of such an approach is
that we will not be able to check locality of the KZ spectra manifested in
convergence of the integrals in the wave-kinetic equations.
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Kolmogorov-Zakharov spectra

Write the kinetic equation in the form of the energy balance equation:

Ė
(1D)
k = S kd−1ωkṅk = −∂kP, (20)

where S is a constant equal to the area of the unit sphere in the
d-dimensional space and ωk = k2.

ṅk =

∫
nk1nk2nk3nk

[
1

nk
+

1

nk3
− 1

nk1
− 1

nk2

]
δ(k) δ(ωk) dk1dk2dk3,

Let nk ∼ kν . From (20) we have P ∼ k3d+3ν , so for the constant flux
state P ∼ k0, which results in:

ν = νE = −d (direct cascade). (21)
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Kolmogorov-Zakharov spectra

One can apply the same dimensional analysis to the the inverse waveaction
cascade. For that one needs to write the wave-kinetic equation in the
waveaction conservation form in terms of the waveaction flux Q:

ṅ
(1D)
k ≡ S kd−1ṅk = −∂kQ. (22)

Q ∼ k3d+3ν−2, so for the constant flux state, Q ∼ k0, we have the
following exponent of the spectrum:

ν = νN = −d + 2/3 (inverse cascade). (23)
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Beyond dimensional analysis: rigorous results and numerics

Zhu et al, PRL 2023
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Beyond dimensional analysis: rigorous results and numerics

KZ spectra are only meaningful if they are local, i.e. when the integral
defining the flux (P or Q) converges. Let us now derive the KZ spectra
rigorously, check locality and find the KZ constants.
Kinetic equation in frequency variable:

∂nω
∂t

=
4π3

√
ω

∫
[min (ω, ω1, ω2, ω3)]1/2 nωnω1nω2nω3(
1

nω
+

1

nω1

− 1

nω2

− 1

nω3

)
δ(ω01

23)dω1dω2dω3, (24)

where now ω01
23 = ω + ω1 − ω2 − ω3. N and E in terms of ω:

N = 2π

∫ ∞
0

ω1/2n(ω, t)dω , E = 2π

∫ ∞
0

ω3/2n(ω1, t)dω . (25a-b)
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Fluxes and power law spectra

N and E balance equations:

∂t(ω
1/2n(ω, t)) + ∂ωQ = 0, ∂t(ω

3/2n(ω1, t)) + ∂ωP = 0 . (26a-b)

where N and E fluxes are

Q(ω, t) = −2π

∫ ω

0
ω
1/2
1 St(ω1, t)dω1 , P(ω, t) = −2π

∫ ω

0
ω
3/2
1 St(ω1, t)dω1 .

(27a-b)

Substitute nω = Aω−x (not necessarily a WKE solution) into the WKE:

∂nω
∂t

= 4π3 A3 ω−3x+2 I (x) , (28)

with

I (x) =

∫
q1 ,q2 ,q3>0

[min (1, q1, q2, q3)]1/2 (q1q2q3)−x (1 + qx1 − qx2 − qx3 ) δ
(
q0123
)
dq1dq2dq3 ,

(29)

qi = ωi/ω for i = 1, 2, 3.
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Zakharov transformation (ZT)

If we integrate over q1, the integration domain in the (q2, q3) plane is over:
q2, q3 > 0 , q2 + q3 − 1 = q1 > 0. Apply ZT:

q2 =
1

q̃2
, q1 =

q̃3
q̃2
, q3 =

q̃1
q̃2
, for q2 > 1 , 0 < q3 < 1 ,

q3 =
1

q̃3
, q1 =

q̃2
q̃3
, q2 =

q̃1
q̃3
, for 0 < q2 < 1 , q3 > 1 ,

q1 =
1

q̃1
, q2 =

q̃3
q̃1
, q3 =

q̃2
q̃1
, for q2 , q3 > 1 .

(30)

After dropping tildes, I (x) becomes

IZT(x) =

∫
q
1/2−x
1 (q2q3)−x(1 + qx1 − qx2 − qx3 )(1 + qy1 − qy2 − qy3 ) δ

(
q0123
)
dq1dq2dq3,

(31)
with y = 3x − 7/2, and the integration now is over 0 < q1 , q2 , q3 < 1.

Note: I (x) = IZT(x) only if the integrals are convergent.
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Figure: I (x) and IZT(x) in the window of convergence 1 < x < 3/2 of I (x).

IZT(x) has two zeros: x = 3/2 (y = 1) corresponding to the forward cascade of

energy nω = Aω−3/2 and x = 7/6 (y = 0)—to the inverse cascade of particles

nω = Aω−7/6. However, the ZT is not an identity transformation and, therefore,

the candidates to the stationary solutions must be checked by substituting them

into the original integral I (x) and making sure that it is convergent and equal to

zero. Physically, the integral convergence means that the wave quartets with

similar values of the frequencies dominate the nonlinear evolution; this is the

so-called interaction locality. Mathematically, violation of locality simply means

that the considered spectrum is not a valid solution.
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Figure: I (x) and IZT(x) in the window of convergence 1 < x < 3/2 of I (x).

I (x) and IZT(x) do coincide in interval 1 < x < 3/2. Therefore, the
inverse cascade spectrum nω = Aω−7/6 is local, and a valid mathematical
solution of the WKE. Further, I (3/2) is convergent and, using
Mathematica, I (3/2) = −4π + 16 ln 2. Fact I (3/2) 6= 0 implies that,
although the collision integral of the WKE is convergent for x = 3/2, the
spectrum with this exponent is not an exact stationary solution of the
WKE. However, with a logarithmic correction this spectrum can be made
a valid asymptotical solution for the direct cascade.
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Plug spectrum n = Ak−x into the N-balance equation:

∂
(
2πω1/2nω

)
∂t

= −∂Q(ω, t)

∂ω
≡ 8π4 A3 ω−3x+5/2 IZT(x) .

with Q(ω, t) =

∫ ω

0

(
−8π4 A3 ω

−3x+5/2
0 IZT(x)

)
dω0 = 8π4A3ω−y

IZT(x)

3x − 7/2
.

For x → 7/6 (y → 0), by L’Hopital Q = 8π4A3I ′ZT (7/6)/3, so

nk = nω = 31/3
(
8π4I ′ZT (7/6)

)−1/3
Q1/3ω−7/6.

Using Mathematica, we find:

Ci =
1

2π3/2
Γ
(
5
6

)1/3 [
3Γ
(
1
3

) (
33/2 22/3

3F2

(
1
6 ,

1
6 ,

1
3 ; 4

3 ,
4
3 ; 1
)
− 8 3F2

(
1
6 ,

1
3 ,

1
3 ; 4

3 ,
3
2 ; 1
)

+ 21/3
3F2

(
1
3 ,

1
3 ,

1
2 ; 3

2 ,
5
3 ; 1
)
− 21/3

4F3

(
1
3 ,

1
3 ,

1
2 ,

1
2 ; 3

2 ,
3
2 ,

5
3 ; 1
) )]−1/3
≈ 7.5774045× 10−2.
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Now, plug spectrum n = Ak−x into the E -balance equation:

∂
(
2πω3/2nω

)
∂t

= −∂P(ω, t)

∂ω
≡ 8π4 A3 ω−3x+7/2 I (x) , (32)

P(ω, t) =

∫ ω

0

(
−8π4 A3 ω

−3x+7/2
0 I (x)

)
dω0 . (33)

Since 0 < I (3/2) = const <∞, Eq. (33) gives a logarithmically divergent
integral for x = 3/2. Cutting off at the forcing frequency ωf = k2f :

P =

∫ ω

ωf

(
−8π4 A3 ω−10 I (3/2)

)
dω0 = −8π4 A3 I (3/2) ln

ω

ωf
. (34)

But flux P must be independent of ω for steady state solutions. This is
clearly not the case in the above expression, which is another indication
that ∼ ω−3/2 is not a valid stationary solution of the WKE.
To remove the ω-dependence term ln ω

ωf
in P we introduce a logarithmic

correction and seek a solution as nω = Cω−x lnz ω
ωf

.
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Thus, we obtain

P =− 8π4C 3 I (x) ln3z ω

ωf

∫ ω

ωf

ω
−3x+7/2
0 dω0 . (35)

Independence of P from ω requires x = −3/2 and z = −1/3,

nω =
(
−8π4I (3/2)

)−1/3
P1/3ω−3/2 ln−1/3(ω/ωf) , then

nk =
(
−16π4I (3/2)

)−1/3
P1/3k−3 ln−1/3(k/kf) . (36)

The analytical expression I (3/2) = −4π + 16 ln 2 gives Cd ≈ 7.58× 10−2.
Numerically obtained I (3/2−) ≈ −4.42 gives an alternative Cd ≈ 5.26× 10−2.
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Summary

Nonlinear chaotic motions of waves in BEC have properties of turbulence:
dual cascades, Kolmogorov-like scalings.

Inverse cascade of the waveaction/particles is a process of nonequilibrium
condensation. Direct cascade of energy is an ”evaporative cooling”.

Direct cascade in experimental BEC WT is explained. Inverse cascade is
awaiting experimental implementation.

Acknowledgements:

Sergey Nazarenko with Y. Zhu, B. Semisalov, G. KrstulovicDirect and inverse cascades in BEC Wave Turbulence 40 / 40


	Basic ideas and facts in hydrodynamic turbulence
	Energy cascade in the k-space
	Energy cascade in the k-space
	Kolmogorov-Obukhov theory of 3D turbulence
	2D Turbulence
	Kolmogorov-Zakharov spectra

	Behavior of the collision term on the power-law spectra 
	Derivation of the inverse cascade constant [yellowZhu et al, 2022]
	Derivation of the forward cascade [yellowZhu et al, 2022]
	Stationary cascade KZ states [yellowZhu et al, 2022]
	Direct cascade
	Inverse cascade


