Are 2D classical and quantum turbulence equivalent? **Insights from velocity circulation statistics**

arXiv:2306.17735 (2023)

Nicolás P. Müller & Giorgio Krstulovic

Laboratoire J.-L Lagrange, Observatoire Côte d'Azur, Nice, France

Bridging classical and quantum turbulence (3-15 July 2023)

Phenomenology of 2D turbulence

Absence of vortex stretching

$$\partial_t \boldsymbol{\omega} + (\mathbf{u} \cdot \nabla) \boldsymbol{\omega} = (\boldsymbol{\omega} \cdot \nabla) \mathbf{u} + \nu \nabla^2$$

Two conserved quadratic quantities: Energy and enstrophy

$\frac{\mathrm{d}E}{\mathrm{d}t} = -2\nu\Omega = -\epsilon$	$\frac{\mathrm{d}\Omega}{\mathrm{d}t} = -2\nu$
$E = \langle u^2 \rangle / 2$ $\Omega = \langle u^2 \rangle $ Energy Enst	$\omega^2 \rangle / 2$ $P = \langle $ rophy Pali
Inverse energy cascade	Direct enstro
$E(k) = C_I \epsilon^{2/3} k^{-5/3}$	$E(k) = \mathbf{k}$
for $k_0 \ll k \ll k_f$	for $k_f \ll$

2D quantum turbulence

Vortex clustering in a 2D BECs

Gauthier et al. - Science (2019)

Confined superfluid ⁴He (a) $l = 1.3 \, \text{mm}$ w = 1.6 mm*D*= 1067 nm

Experiments

Varga et al. - PRL (2020)

Exciton-polariton $|\mathbf{V}_{ ext{inc}}|$

Panico et al. - Nature Photonics (2023)

Lack of intermittency in 2D turbulence

In 3D turbulent flows, there are strong velocity fluctuations that affect high-order statistics and produce the break down of self-similarity.

Self-similar Kolmogorov 1941 theory for 3D turbulence

$$S_p = \langle \delta u_r^p \rangle \sim \epsilon^{p/3} r^{p/3} \qquad \delta u_r = u(x+r)$$

$$S_p = \langle \delta u_r^p \rangle \sim r^{\zeta_p}$$
 $\zeta_p^{\text{K41}} = \frac{p}{3}$

3D turbulence is intermittent (anomalous deviations) 2D turbulence is self-similar (close-to-Gaussian statistics)

Experiments: Paret & Tabeling (PRL, 1997), Paret & Tabeling (Phys. Fluids, 1998), ... Simulations: Boffeta et al. (PRL, 2000), Boffetta & Ecke (Annu. Rev. Fluid Mech. 2012), ...

Circulation in 3D classical and quantum turbulence

Scaling of circulation moments using dimensional analysis

s
$$(1) = 4n$$

Circulation: Iyer et al. (PRX, 2019), Iyer et al. (PNAS, 2020), Müller et al. (PRX, 2021), Polanco et al. (Nat. Comm., 2021), Müller et al. (PRFluids, 2022), ...

Circulation in 3D classical and quantum turbulence

Scaling of circulation moments using dimensi

2021), Polanco et al. (*Nat. Comm.*, 2021), Müller et al. (*PRFluids*, 2022), ...

2D turbulence: Results

Incompressible Navier—Stokes equation

$$\partial_t \omega + (\mathbf{u} \cdot \nabla)\omega = \nu \nabla^2 \omega - \alpha \omega + f$$

$N_c^2 = 6144^2$ collocation points

Gross—Pitaevskii equation

Numerical simulations of GP

Direct enstrophy cascade Initial condition at k=1

Vorticity

Inverse energy cascade Initial condition at k=20

Vorticity

We perform 4 numerical simulations: 2 for NS, and 2 for GP. In each case, one for the inverse and another for the direct cascades.

Inverse energy cascade

 $E(k) = C_I e^{2/3} k^{-5/3}$ for $k_I \ll k \ll k_0$

Direct enstrophy cascade

 $E(k) = C_D \beta^{2/3} k^{-3}$ for $k_f \ll k \ll k_\eta$; $k_0 \ll k \ll k_\ell$

Other scalings in quantum turbulence

$$E(k) \sim k^{-1}$$
 for $k_{\ell} \ll k \ll k_{\xi}$

 $E(k) \sim k^{-3}$ for $k \gg k_{\xi}$

2D turbulence: Results

We perform 4 numerical simulations: 2 for NS, and 2 for GP. In each case, one for the inverse and another for the direct cascades.

Inverse energy cascade

$$\begin{split} E(k) &= C_I e^{2/3} k^{-5/3} \quad \text{for} \quad k_I \ll k \ll k_0 \\ & \langle \Gamma_r^2 \rangle \sim r^{8/3} \quad \text{for} \quad L_0 \ll r \ll L_I \end{split}$$

Direct enstrophy cascade

$$\begin{split} E(k) &= C_D \beta^{2/3} k^{-3} \quad \text{for} \quad k_f \ll k \ll k_\eta \text{ ; } k_0 \ll k \ll k_\ell \\ &\left< \Gamma_r^2 \right> \sim r^4 \quad \text{for} \quad r \ll L_0 \text{ ; } \ell \ll r \ll L_0 \end{split}$$

Other scalings in quantum turbulence

$$E(k) \sim k^{-1}$$
 for $k_{\ell} \ll k \ll k_{\xi}$

$$E(k) \sim k^{-3}$$
 for $k \gg k_{\xi}$

 $\langle \Gamma_r^2 \rangle \sim r^2$ for $r \ll \ell$

2D turbulence: Results

- **Different** intermittent behavior in classical and quantum turbulence
- Quantum vortices play a crucial role for high-order statistics

Conclusions

We characterised the limits of the equivalence between 2D classical and quantum turbulence

High-order statistics of velocity circulation in 2D turbulence

Inverse energy cascade:

- Quantum turbulence exhibits an intermittent behavior
- Consistent with numerical simulations in classical turbulence
- Consistent with recent experimental measurements of Zhu et al. (PRL, 2023)
- Strong difference with velocity increments structure functions

Direct enstrophy cascade:

- Simulations and experiments in classical turbulence show no intermittency
- Quantum turbulence is intermittent
- Quantum vortices introduce strong fluctuations in the enstrophy cascade

