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Outline:

PART A: brief introduction on superfluid He* (called He-ll)

* Fluid-Mechanical approach of He-ll dynamics ; two-fluid approach
 Coarse-grained dynamics
e HVBK closure conditions

PART B: Quantum Turbulence under HVBK closure conditions
* Scale-by-scale energy cascade budget of He-ll mixture

* Introduction of effective characteristic scales and Reynolds numbers
 Intermittency and anomalous scaling laws ; temperature dependence



PART A

Brief introduction on superfluid He* (called He-II)
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Superfluid He*— general features

Superfluid He*is an archetype of quantum fluid
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A superfluid is not a « perfect » Euler fluid with kinematic viscosity v = 0
but behaves as if it consists of two components (co-penetrating fluids) :
¢ inviscid superfluid component (quantum ground state : vortex line)

,P P = Pnt+ Ps
[ J
— n S
pu = ppu™ + psu
Fig. 12: A turbulent tangle of vortex lines.

e normal fluid component (excited states : phonons and rotons)
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Length scales in the problem

Kelvin waves

d = vortex core . £ = intervortex distance << dx = resolution  flow dimension
nm Vortex reconnection um mm
>
d~10"1m
¢ ~1075 478 S

ST~

% i ﬂ dx = grid resolution > ¢ = intervortex distance
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Coarse-grained dynamics of He-llat 1K < T < T = 2.17K

e superfluid component: coarse-graining

dx >> intervortex distance

Vortex tangle — / Euler fluid

+ subgrid scale dissipation :
vortex reconnection, etc.

microscopic = semi-classical approach, e.g. Gross Pitaevskii macroscopic

with mutual coupling
e normal-fluid component:

Navier-Stokes fluid
with viscosity v,




HVBK closure condition for the mutual coupling
Hall-Vinen-Bekharevich-Khalatnikov (1956, 1961)

eHe-ll is considered isothermal and incompressible
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Du®
PsHr = —Vps — Fyypk + "subgrid dissipation”

w® =V X u® superfluid vorticity accounts for the underlying tangle of quantized vortices

superfluid vorticty empirical parameters
PnPs \ / B pnps @° B’ ppps
F oS, u*—u’,B,B' |~ ————— X(wsxX WU —u")) +— SX (u® —u") =(——
hvbk( p ) 2 ) o] ( ( ) > ( )

/ p - p
/ \ \ most relevant for

mass density slip velocity mutual friction + Magnus effect + vortextension Quantum Turbulence



Limitations and alternatives to HVBK closure condition

HVBK was originally designed for regular pattern of quantized vortices with parallel orientation

B
Fthk ~ — Epnpps KL(un - us)
S
L~ o] vortex line density
K

In the context of QT, it is expected to capture only the locally polarized contribution of the superfluid vortex tangle : |w®| = kL,
Randomly oriented quantized vortices also participate to mutual friction : kL = k(Ly + L,) but are not taken into account

Vinen’s model accounts for locally non-polarized superfluid vortex tangle :

dL 3
Fyinen = —a(T) ps K L)((un —u’) d_tX = ay|u™ — u’ Li — By ng

production decay

Attempts to unify Vinen’s model and HVBK closure condition (T. Lipniacki) :
V x u®

kL

q= measure of local anisotropy of the superfluid vortex tangle

q = 1 : polarized vortices
q = 0 :isotropic, unpolarized tangle



PART B

Quantum Turbulence under HVBK closure conditions
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Mainstream consensus
Quantum Turbulence is probably very similar to Classical Turbulence

To what extent : scale-by-scale comparison ; dependence on temperature ?

Review

Quantum Turbulence

W. F. Yinen"? and J. J. Niemela?

' School of Physics and Astronomy, University of Birmingham, Birmingham BI15 2TT,
United Kingdom
E-mail: w.f.vinen@bham.ac.uk
! Cryogenic Helium Turbulence Laboratory, Department of Physics, University of Oregon,
Eugene, Oregon 97403, U.5.4.

(Received April 4, 2002)

The paper presents an extended review of our knowledege and understanding
of turbulence in a superfluid (*He and *He-B), a system in which turbulent
flow can be greatly influenced by guantum effects such as those leading ro the
restriction of rotational superfluid flow to quantized vortex lines. Introduc-
tions are included to relevant aspects of classical turbulence and superfluid
dynamics, and there are discussions of experimental methods and of the use of
computer simulations. A brief description is given of counterflow turbulence,
which was discovered 50 years ago and for many aspects of which there is a
well-established theory. Counterflow turbulence has no classical analogue.
Most of the paper is devoted to more recent experimental and theoretical
work, which has focussed on types of quantum turbulence that do have classi-
cal analogues, especially those relating to the simplest case of turbulence that
is spatially homogeneous. It is argued that turbulence in the quantum case is

probably very similar to that in the classical case on length scales large

compared with a characteristic quantum length scale equal to the spacing
between the vortex lines. On smaller length scales the two types of turbulence
must be very different, and the probable characteristics of quantum turbulence
on these small length scales are explored. Emphasis is placed on the need for
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Coarse-grained dynamics of QT under HVBK closure conditions
Mathematical framework of our study

No temperature effect
Momentum equation for normal fluid and superfluid components:

—n+(u"-V)u”=—inn+&F"S+vnV2un V-u*=0
dat Pn p

S+(uS-V)uS=—le _Lnpns 4 V-u® =0
ot ps P

—p”fs F™ is the mutual coupling force per unit mass of He-ll with

B
FNS — _Elwsl (un _uS)

for the HVBK closure condition ; @® = V X u® is the coarse grained superfluid vorticity

B
F° = —EKL (u" —uw’)

in a mean-field approximation with L being the (uniform) vortex line density



Wavenumber-by-wavenumber energy budget of QT

' . Ps — 1 at T = 1.96K

Pn

viscous
dissipation

triadic
interactions =
energy cascade

(a) Superfluid (b) Normal fluid (c) Total
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k 4 k
FI1G. 1. Scale-by-scale spectral energy luxes in (a) the superfluid component, (b) the normal fluid component, and (¢) the two-fluid mixture.

Blue solid lines, energy flux 11(4) through wave number k; orange dashed lines, viscous dissipation 22(k); green dotied lines, energy transfers
due to mutual friction. Results obtained from HVBK simulations at 7 = 1,96 K (casc = in Tablc 1).
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Scale-by-scale energy budget in classical turbulence

U; (x,' t)

Uu; (x, t)

Under the assumption of stationary homogeneous and isotropic turbulence,

Suy(x,r,t) =du(x,r,t)

longitudinal velocity increment

Su;(x, 1, t) = u;(x', t) —u;(x,t) velocity increment
r = x' — x spatial increment _ T Lo
) ) ) ) Irl

an exact scale-by-scale energy budget can be derived from the Navier-Stokes equations,

€ = €in;j
€ refers to the mean dissipation rate (per unit mass)

4
< 6w (r)Suy(r) > = ~3€inj T+ 2v

energy cascade
forr < L : energy injection scale

d < |8u;|?(r) >

dr

viscous dissipation

This eventually yields the famous Kolmogorov’s four-fifth law

< Sup(r) >= ==

Eian'+6V

d < duf(r) >
dr

/ injection of energy
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Scale-by-scale energy budget in Quantum Turbulence
for normal fluid and superfluid components individually

« F¥(x',t)

l )
/: : spatial increment
Ps .

Normal fluid: el = e ——= < ul'F™s >
inj 0 i Ui u; (%, t)

3 1n]

forr < Ly : energy injection scale

4 d
< |Sul)?(Méul'(r) >= —=€ltir — < nERS > 4 < ulFS S tdr 4 2v, — < |SulA(r) >
i I D rz dr

Superfluid:

Pr 2

r !/ !/ d
< |Sui*(r)duj(r) > = — = €T T f (<uf'F™ > + <ufF >)r’2dr’ + sza < |6ui|*(r) >
0

forr < Lg : energy injection scale



Scale-by-scale energy budget in Quantum Turbulence
for the two-fluid He-ll mixture

Pn |6ult|?6ul > 4B o |6uf|?6u; > =
0 i I D i I

4 (Pn n | Ps
——|—€i+—€n |7 _ 4 p
3<p o Eini=?nfirﬁj+;s inj
pn_d Ps d p %
+ 2 | — v <I6ull? > +— vg— < |6uf|* > j=1n, IS
(pvndr |6u;'| pVSdI‘ |6u; | ) v pvn+pvs
2 T ! !
\ _pspfnﬁj <ups FP +uFP > r’zdwy
0 |
with ul* = ul' — u?

Supplementary term compared to Classical Turbulence
At which scale is it effective?

_ 4 ~dS,(r)
Ss;(r) = — 3 €EinjT" + 2V (ir + Qs (7) mass-density weighted scale-by-scale energy budget of He-ll




Mutual coupling — energy budget

Ps Pn 2 (" ns!’ pns ns pns’ 12 3.1
Pps(r) = — 27 12 <u;” FY +u F» >r'7dr
0
€ns = Ps ,zon < uPF* >
p
Pns(1) = — i jr kil >T'2dr’
ns r? J, 2 <u®F®» >

If HVBK: F/*= —glwsl u™ with |w%| = /< |@5|2 > = kL

mean-field approximation




Mutual coupling — scale behaviour

/
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Effective Kolmogorov’s scale for He-l|

/In classical turbulence : Kolmogorov’s scale is obtained by equaling N

Uy 2 : e ” P
= S(r) ~< (%) >7r? ~ %rz in the “dissipative range” where velocity field is regular (smooth)

= and S, (1) ~ €2/3 r?/3 in the “inertial range” where velocity field is irregular

3\ 1/4
KThis yields p ~ <?>

Analogously in quantum turbulence : effective Kolmogorov’s scale would be obtained by equaling
2

2
oull ous
- <pnvn< af) +pSVs< axx> > 2 E.'V 5 . “ .. . . ) . . .
= S(r) ~ r“ ~ —r* in the "dissipative range” where velocity field is regular
/ PnVn+pPsVs v
_2/3

= and S,(r) ~ €inj r2/3 in the “inertial range’” where velocity field is regular

This yields

73

1 3
_ 4 €Eini 4 . . _ _
n ~ (;) X (__ ) by considering €, = €, + €ns
‘ / enhanced viscosity that accounts for mutual friction

5 3 4 (201
7 (S2) with we = v x ()

€inj €inj—€ns

Or equivalently :

| =




Effective Reynolds number for He-lI

Effective Reynolds number:

Effective Taylor microscale 4 is defined by

u 2
€inj= 15 Vgt ( %ms)

or equivalently

u 2
€, = 157( r/_lms)

urms/l

R; = ~ vVRe

Verf



Numerical Results from Pseudo-Spectral Simulations
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Mutual friction for He-ll mixture is essentially a dissipative process that adds to viscous dissipation at very scale scales



Controversy on intermittency in Quantum Turbulence
Experimental results

Experimental studies : 25
2L
O “Local investigation of superfluid turbulence” L5l L :
J. Maurer and P. Tabeling F

Europhys. Lett. 43 (1), pp. 29-34 (1998)

—a— fp=10%
Fig. 5. — Exponents of the structure functions of the absolute values of the longitudinal veloci perr
increments, up to p = 7, for 7' = 1.4 K (black disks); the full line represents the current values fou . 5107

f = b

in normal fluid turbulence; the dashed line is the Kolmogorov line. = P
p.lp = 63%

—e—p_/p=113%

—e—p_[p = 85.8%

O “Intermittency of QT with superfluid fraction from 0% to 96%"’ oo = 95.7%

E. Rusaouen, B. Chabaud, J. Salort, P-E Roche 0.5 ]
Phys. Fluids 29, 105108 (2017) 1 2 3 4 G

l:-
... No evidence of temperature dependence is found on these scaling exponents in the upper part of the inertial cascade, where
turbulence is well developed and fully resolved by the probe...”

O “Intermittency enhancement in quantum turbulence in superfluid 4He”
Emil Varga, Jian Gao, Wei Guo, and Ladislav Skrbek
Phys. Rev. Fluids 3, 094601 (2018)

.. measurements reveal temperature-dependent intermittency corrections (on transverse velocity structure functions) that peak in
the vicinity of 1.85K in excellent agreement with recent theoretical predictions ...



Controversy on intermittency in Quantum Turbulence
Numerical results

. . —— Present work
Numerlcal StUdles . o same with 20-80Hz fitting window ---p=06 Shukla et al. (2016)
+ Shukla et al. -::1|ur'1||.'|| I YL 4
—— Shukla et al. (superfluid) === p=2
—— Boué et al. ) ) \
Kolmogorov 41 -&-p =10 Present experiment
O “Enhancement of Intermittency in Superfluid Turbulence” 0.74 _e_;’z
Laurent Boué, Victor L'vov, Anna Pomyalov, and Itamar Procaccia ] -p—6 Boué et al. (2013)
(.72 - y al, | 2lay)
Phys. Rev. Lett. 110, 014502 (2013) e
0.7 / """" p=2
3 1 p=
0.68F T -— £-8—8 0.3
) o ) 066l }K{"";’{ ________ 0l . |
O “Multiscaling in superfluid turbulence: A shellmodel study” e .
V. Shukla and R. Pandit 06, 0.2 0.4 0.6 0.8 | w1 'I |
L%
Phys. Rev. E 94, 043101 (2016) Pafp 7
FIG. 10. Exponents of the second order structure function as a function of v i
the superfluid fraction. For explanation on open symbols, see the text. o R
0.1
AN 3 . . 3 . . . 77 _‘]-2 1" ]
L “Turbulent statistics and intermittency enhancement in coflowing superfluid 4He 0 02 04 06 08 i
L. Biferale, D. Khomenko, V. L'vov, A. Pomyalov, |. Procaccia, and G. Sahoo p./p
PhyS Rev. Fluids 3, 024605 (2018) FIG. 11. Superfluid correction of the intermittency exponents. Note that the

dotted line for orders p = 4 and p = 6 have been calculated from an analytical
formula provided in the original paper.

...The energy transfer by mutual friction between components is particularly efficient in the temperature range between 1.8 and 2 K,
leading to enhancement of small-scale intermittency for these temperatures...”



Flatness of longitudinal increments for normal fluid and superfluid components

TABLE L. Simulation parameters.

Key T(K) po/pn vslve B N kyadl A/ L/A Ry
*x L4410 0.2 2.0 1152 1.6 33.7 19.6 294
v o144 10 02 20 1152 29 272127 191
o 196 1 0.2 1.0 1728 3.6 29.0 145 217
o 196 | 0.2 1.0 1728 29 31.2 16.7 251
e 196 | 0.1 1.0 1728 3.5 30,0 14.6 233
A 2057 01 02 2161152 28 274 129 194
¢ NS O 2048 1.4 44.6 34.2 510

classical turbulence

Inset = results from Biferale et al.
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Enhancement of intermittency due to dissipative effects
depends on temperature through the mutual friction
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Universal scaling exponent for all temperatures
similar to classical turbulence



Conclusion — Take Home messages

O Mutual friction for He-ll mixture is essentially a dissipative process that adds to viscous dissipation at very scale scales

(c) Total

=
l

energy cascade
)

— S5(r)/[(4/3) £ 7]
o]
|

0.0 ==

| i | | 109 10" 102 10°

10° 10° 102 10° k
T/ 1
= 3\ €
: : . _ (v L — — €
This allows us to define an effective Kolmogorov scale 7 ~ (%) with Vege =V X (%)
inj inj~ ¢ns

UppnsL Lo\*
and an effective Reynolds number Re = FVLO ~ (#)
eff



Conclusion — Take Home messages

O In the inertial range, the energy cascade remains the dominant dynamical process :
- the two fluid components are locked
- scaling properties agree with that of classical turbulence for all temperatures

Fully consistent with Zhang Z, Danaila |, Lévéque E, Danaila L.
“Higher-order statistics and intermittency of a two-fluid Hall-Vinen-Bekharevich-Khalatnikov quantum turbulent flow” J. Fluid Mech.. 2023;962:A22

classical turbulence
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