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Outline :

PART A: brief introduction on superfluid He4 (called He-II)

• Fluid-Mechanical approach of He-II dynamics ; two-fluid approach
• Coarse-grained dynamics
• HVBK closure conditions

PART B: Quantum Turbulence under HVBK closure conditions

• Scale-by-scale energy cascade budget of He-II mixture
• Introduction of effective characteristic scales and Reynolds numbers
• Intermittency and anomalous scaling laws ; temperature dependence



PART A
Brief introduction on superfluid He4 (called He-II)



Superfluid He4– general features

𝜌𝑠 : superfluid mass density 

𝜌𝑛 : normal-fluid mass density 

but behaves as if it consists of two components (co-penetrating fluids) :
• inviscid superfluid component (quantum ground state : vortex line)

• normal fluid component (excited states : phonons and rotons)

Superfluid He4 is an archetype of quantum fluid

A superfluid is not a « perfect » Euler fluid with kinematic viscosity 𝜈 → 0

normal

superfluid

𝜌 = 𝜌𝑛 + 𝜌𝑠

𝜌𝑢 = 𝜌𝑛𝑢
𝑛 + 𝜌𝑠𝑢

𝑠



nm mm

Kelvin waves
Vortex reconnection

ℓ = intervortex distance << dx = resolutiond = vortex core flow dimension
mm
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ℓ ∼ 10−5𝑚

𝑑 ∼ 10−10𝑚

dx = grid resolution ≫ ℓ = intervortex distance

Length scales in the problem



• superfluid component:

• normal-fluid component:

Vortex tangle

coarse-graining
dx >> intervortex distance

Navier-Stokes fluid
with viscosity 𝜈𝑛

with mutual coupling

microscopic = semi-classical approach, e.g. Gross Pitaevskii macroscopic

Coarse-grained dynamics of He-II at 1K < 𝑇 < 𝑇𝜆 = 2.17K

Euler fluid

+ subgrid scale dissipation : 
vortex reconnection, etc. 
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smoothed superfluid velocity field

•He-II is considered isothermal and incompressible

mutual friction   +   Magnus effect +   vortex tension

HVBK closure condition for the mutual coupling
Hall-Vinen-Bekharevich-Khalatnikov (1956, 1961)

𝜌𝑛
D𝒖𝑛

D𝑡
= −∇𝑝𝑛 + 𝑭hvbk + 𝜈𝑛∇

2𝒖𝑛

𝜌𝑠
D𝒖𝑠

D𝑡
= −∇𝑝𝑠 − 𝑭hvbk + "subgrid dissipation"

𝝎𝒔 = 𝛁 × 𝒖𝑠 superfluid vorticity accounts for the underlying tangle of quantized vortices

𝑭hvbk
𝜌𝑛𝜌𝑠
𝜌

, 𝝎𝑠, 𝒖𝑛 − 𝒖𝑠, 𝐵, 𝐵′ ≈ −
𝐵

2

𝜌𝑛𝜌𝑠
𝜌

𝝎𝑠

|𝝎𝑠|
× 𝝎𝑠 × 𝒖𝑠 − 𝒖𝑛 +

𝐵′

2

𝜌𝑛𝜌𝑠
𝜌

𝝎𝑠 × 𝒖𝑠 − 𝒖𝑛 ≈ −
𝐵

2

𝜌𝑛𝜌𝑠
𝜌

|𝝎𝑠| 𝒖𝑛 − 𝒖𝑠

mass density slip velocity

superfluid vorticty empirical parameters

most relevant for 
Quantum Turbulence



Vinen’s model accounts for locally non-polarized superfluid vortex tangle :

Limitations and alternatives to HVBK closure condition

HVBK was originally designed for regular pattern of quantized vortices with parallel orientation

𝐿 ≈
𝝎𝒔

κ
vortex line density

In the context of QT, it is expected to capture only the locally polarized contribution of the superfluid vortex tangle : 𝝎𝒔 = 𝜅𝐿∥
Randomly oriented quantized vortices also participate to mutual friction : 𝜅𝐿 = 𝜅(𝐿∥ + 𝐿𝜒) but are not taken into account

𝑭hvbk ≈ −
𝐵

2

𝜌𝑛𝜌𝑠
𝜌

𝜅𝐿 𝒖𝑛 − 𝒖𝑠

𝑭Vinen = −𝛼(𝑇) 𝜌𝑠 𝜅 𝐿𝜒 𝒖𝑛 − 𝒖𝑠 d𝐿𝜒

dt
= 𝛼𝑉 𝒖𝑛 − 𝒖𝑠 𝐿𝜒

3
2 − 𝛽𝑉 𝐿𝜒

2

production decay

𝒒 =
∇ × 𝒖𝒔

𝜅𝐿

𝑞 = 0 : isotropic, unpolarized tangle

𝑞 = 1 : polarized vortices

Attempts to unify Vinen’s model and HVBK closure condition (T. Lipniacki) :

measure of local anisotropy of the superfluid vortex tangle



PART B
Quantum Turbulence under HVBK closure conditions



To what extent : scale-by-scale comparison ; dependence on temperature ?

viscous
dissipation

?

Mainstream consensus
Quantum Turbulence is probably very similar to Classical Turbulence 



𝜕𝒖𝑛

𝜕𝑡
+ 𝒖𝑛 ⋅ ∇ 𝒖𝑛 = −

1

𝜌𝑛
∇p𝑛 +

𝜌𝑠
𝜌
𝑭𝑛𝑠 + 𝜈𝑛∇

2𝒖𝑛 ∇ ⋅ 𝑢𝑛 = 0

𝜕𝒖𝑠

𝜕𝑡
+ 𝒖𝑠 ⋅ ∇ 𝒖𝑠 = −

1

𝜌𝑠
∇p𝑠 −

𝜌𝑛
𝜌
𝑭𝑛𝑠 + 𝜈𝑠∇

2𝒖𝑠 ∇ ⋅ 𝑢𝑠 = 0

𝜌𝑛𝜌𝑠

𝜌2
𝑭𝑛𝑠 is the mutual coupling force per unit mass of He-II with

𝑭𝑛𝑠 = −
𝐵

2
|𝝎𝑠| (𝒖𝑛 − 𝒖𝑠)

for the HVBK closure condition ; 𝝎𝑠 = ∇ × 𝒖𝑠 is the coarse grained superfluid vorticity

𝑭𝑛𝑠 = −
𝐵

2
𝜅𝐿 (𝒖𝑛 − 𝒖𝑠)

in a mean-field approximation with 𝑳 being the (uniform) vortex line density 

No temperature effect

Coarse-grained dynamics of QT under HVBK closure conditions
Mathematical framework of our study

Momentum equation for normal fluid and superfluid components:

to account for dissipation beyond inter-vortex scale: reconnection, 
Kelvin waves, sound emission, etc.



Wavenumber-by-wavenumber energy budget of QT

viscous
dissipation

? 𝜌𝑠
𝜌𝑛

= 1 at 𝑇 = 1.96K



𝜌𝑠
𝜌𝑛

= 1

𝜌𝑠
𝜌𝑛

= 0.1

𝜌𝑠
𝜌𝑛

= 10

𝜈𝑛
𝜈𝑠

= 5



Scale-by-scale energy budget in classical turbulence

𝑢𝑖(𝒙, 𝑡)

𝑢𝑖(𝒙
′, 𝑡)

𝛿𝑢𝑖(𝒙, 𝒓, 𝑡) ≡ 𝑢𝑖 𝒙
′, 𝑡 − 𝑢𝑖 𝒙, 𝑡

𝒓 = 𝒙′ − 𝒙 spatial increment 𝛿𝑢∥ 𝒙, 𝒓, 𝑡 = 𝛿𝒖(𝒙, 𝒓, 𝑡) ⋅
𝒓

𝒓

velocity increment

longitudinal velocity increment

energy cascade viscous dissipation

injection of energy

energy
cascade

viscous dissipation

Under the assumption of stationary homogeneous and isotropic turbulence, 
an exact scale-by-scale energy budget can be derived from the Navier-Stokes equations, 

𝜖 = 𝜖inj
𝜖 refers to the mean dissipation rate (per unit mass)

< 𝛿𝑢𝑖
2(𝑟)𝛿𝑢∥(𝑟) > = −

4

3
𝜖inj 𝑟 + 2𝜈

d < 𝛿𝑢𝑖
2(𝑟) >

dr

for 𝑟 ≪ 𝐿0 : energy injection scale 

This eventually yields the famous Kolmogorov’s four-fifth law

< 𝛿𝑢∥
3(𝑟) > = −

4

5
𝜖inj 𝑟 + 6 𝜈

d < 𝛿𝑢∥
2(𝑟) >

dr



𝜖inj
𝑛 = 𝜖𝑛 −

𝜌𝑠
𝜌
< 𝑢𝑖

𝑛𝐹𝑖
𝑛𝑠 >

< 𝛿𝑢𝑖
𝑛 2(𝑟)𝛿𝑢∥

𝑛(𝑟) > = −
4

3
𝜖inj
𝑛 𝑟 −

𝜌𝑠
𝜌

2

𝑟2
න
0

𝑟

< 𝑢𝑖
𝑛′𝐹𝑖

𝑛𝑠 > + < 𝑢𝑖
𝑛𝐹𝑖

𝑛𝑠′ > 𝑟′
2
𝑑𝑟′ + 2𝜈𝑛

d

dr
< 𝛿𝑢𝑖

𝑛 2(𝑟) >

Normal fluid: 

𝜖inj
𝑠 = 𝜖𝑠 +

𝜌𝑛
𝜌
< 𝑢𝑖

𝑠𝐹𝑖
𝑛𝑠 >

< 𝛿𝑢𝑖
𝑠 2(𝑟)𝛿𝑢∥

𝑠(𝑟) > = −
4

3
𝜖inj
𝑠 𝑟 +

𝜌𝑛
𝜌

2

𝑟2
න
0

𝑟

< 𝑢𝑖
𝑠′𝐹𝑖

𝑛𝑠 > + < 𝑢𝑖
𝑠𝐹𝑖

𝑛𝑠′ > 𝑟′
2
𝑑𝑟′ +2𝜈𝑠

d

dr
< 𝛿𝑢𝑖

𝑠 2(𝑟) >

Superfluid: 

Scale-by-scale energy budget in Quantum Turbulence
for normal fluid and superfluid components individually

𝑢𝑖(𝒙, 𝑡)

𝐹𝑖
𝑛𝑠(𝒙′, 𝑡)

𝒓 ∶ spatial increment

for 𝑟 ≪ 𝐿0 : energy injection scale

for 𝑟 ≪ 𝐿0 : energy injection scale



𝜌𝑛
𝜌
< 𝛿𝑢𝑖

𝑛 2𝛿𝑢∥
𝑛 > +

𝜌𝑠
𝜌
< 𝛿𝑢𝑖

𝑠 2𝛿𝑢∥
𝑠 > =

−
4

3

𝜌𝑛
𝜌
𝜖inj
𝑛 +

𝜌𝑠
𝜌
𝜖inj
𝑠 𝑟

+ 2
𝜌𝑛
𝜌
𝜈𝑛

d

dr
< 𝛿𝑢𝑖

𝑛 2 > +
𝜌𝑠
𝜌

𝜈𝑠
d

dr
< 𝛿𝑢𝑖

𝑠 2 >

−
𝝆𝒔 𝝆𝒏
𝝆𝟐

𝟐

𝒓𝟐
න
𝟎

𝒓

< 𝒖𝒊
𝒏𝒔′𝑭𝒊

𝒏𝒔 + 𝒖𝒊
𝒏𝒔𝑭𝒊

𝒏𝒔′ > 𝒓′
𝟐
𝒅𝒓′

Supplementary term compared to Classical Turbulence
At which scale is it effective?

𝑆3 𝑟 = −
4

3
ҧ𝜖inj𝑟 + 2 ҧ𝜈

d 𝑆2 𝑟

dr
+ 𝜑𝑛𝑠(𝑟)

ҧ𝜖inj =
𝜌𝑛
𝜌
𝜖inj
𝑛 +

𝜌𝑠
𝜌
𝜖inj
𝑠

ҧ𝜈 =
𝜌𝑛
𝜌
𝜈𝑛 +

𝜌𝑠
𝜌

𝜈𝑠

mass-density weighted scale-by-scale energy budget of He-II

with 𝑢𝑖
𝑛𝑠 ≡ 𝑢𝑖

𝑛 − 𝑢𝑖
𝑠

Scale-by-scale energy budget in Quantum Turbulence
for the two-fluid He-II mixture



𝜑𝑛𝑠 𝑟 = −
𝜌𝑠 𝜌𝑛
𝜌2

2

𝑟2
න
0

𝑟

< 𝑢𝑖
𝑛𝑠′𝐹𝑖

𝑛𝑠 + 𝑢𝑖
𝑛𝑠𝐹𝑖

𝑛𝑠′ > 𝑟′
2
𝑑𝑟′

If HVBK: 𝐹𝑖
𝑛𝑠= −

𝐵

2
𝝎𝑠 𝑢𝑖

𝑛𝑠 with 𝝎𝒔 ≃ < 𝝎𝒔 2 >= 𝜅𝐿

𝜖𝑛𝑠 =
𝜌𝑠 𝜌𝑛
𝜌2

< 𝑢𝑖
𝑛𝑠𝐹𝑖

𝑛𝑠 >

𝜑𝑛𝑠 𝑟 = 2𝜖𝑛𝑠
2

𝑟2
න
0

𝑟< 𝑢𝑖
𝑛𝑠′𝑢𝑖

𝑛𝑠 >

< |𝑢𝑛𝑠|2 >
𝑟′
2
𝑑𝑟′

𝜑𝑛𝑠 𝑟 = −
4𝜖𝑛𝑠
𝑟2

න
0

𝑟< 𝑢𝑖
𝑛𝑠′𝐹𝑖

𝑛𝑠 + 𝑢𝑖
𝑛𝑠𝐹𝑖

𝑛𝑠′ >

2 < 𝑢𝑖
𝑛𝑠𝐹𝑖

𝑛𝑠 >
𝑟′
2
𝑑𝑟′

Mutual coupling – energy budget

mean-field approximation



𝜑𝑛𝑠 𝑟 = 2𝜖ns
2

𝑟2
න
0

𝑟< 𝑢𝑖
𝑛𝑠′𝑢𝑖

𝑛𝑠 >

< |𝑢𝑛𝑠|2 >
𝑟′
2
𝑑𝑟′

Mutual coupling – scale behaviour

𝜑𝑛𝑠 𝑟 →
4

3
𝜖ns𝑟As 𝒓 → 𝟎:

∼ 𝒓𝟐

at large scales

𝜑𝑛𝑠 𝑟 ∼
1

𝑟2

strong depletion 𝜑𝑛𝑠 𝑟 negligible compared to 
4

3
𝜖inj𝑟

4

3
𝜖ns𝑟 (𝜖𝑛𝑠 < 𝜖inj)

frictional dissipation is negligible 
compared to energy cascade fluxcascade rangedissipative range



Analogously in quantum turbulence : effective Kolmogorov’s scale would be obtained by equaling

▪ 𝑆2 𝑟 ∼
<𝜌𝑛𝜈𝑛

𝜕𝑢𝑥
𝑛

𝜕𝑥

2

+𝜌𝑠𝜈𝑠
𝜕𝑢𝑥

𝑠

𝜕𝑥

2

>

𝜌𝑛𝜈𝑛+𝜌𝑠𝜈𝑠
𝑟2 ∼

ത𝜖𝜈

ഥ𝜈
𝑟2 in the ``dissipative range’’ where velocity field is regular

▪ and 𝑆2 𝑟 ∼ ҧ𝜖inj
2/3

𝑟2/3 in the ``inertial range’’ where velocity field is regular

This yields 

ҧ𝜂 ∼
ഥ𝜈3

ത𝜖inj

1

4
×

ത𝜖inj

ത𝜖inj−𝜖𝑛𝑠

3

4
by considering ҧ𝜖inj = ҧ𝜖𝜈 + 𝜖ns

Or equivalently :

ഥ𝜼 ∼
ത𝛎𝐞𝐟𝐟

𝟑

ത𝝐𝐢𝐧𝐣

𝟏

𝟒
with   ഥ𝝂𝐞𝐟𝐟 = ഥ𝝂 ×

ത𝝐𝐢𝐧𝐣

ത𝝐𝐢𝐧𝐣−𝝐𝐧𝐬

In classical turbulence : Kolmogorov’s scale is obtained by equaling

▪ 𝑆2 𝑟 ∼ <
𝜕𝑢𝑥

𝜕𝑥

2
> 𝑟2 ∼

𝜖

𝜈
𝑟2 in the ``dissipative range” where velocity field is regular (smooth)

▪ and 𝑆2 𝑟 ∼ 𝜖2/3 𝑟2/3 in the ``inertial range’’ where velocity field is irregular

This yields 𝜼 ∼
𝝂𝟑

𝝐

𝟏/𝟒

Effective Kolmogorov’s scale for He-II

enhanced viscosity that accounts for mutual friction



Effective Reynolds number:

𝐑𝐞 =
𝒖𝐫𝐦𝐬𝑳𝟎
ഥ𝝂𝐞𝐟𝐟

∼
𝑳𝟎
ഥ𝜼

𝟑
𝟒

ҧ𝜂 ∼
തνeff

3

ത𝜖inj

1

4
with ҧ𝜈eff = ҧ𝜈

ത𝜖inj

ത𝜖inj−𝜖ns
= ҧ𝜈 1 +

𝜖ns

𝜖ഥ𝜈

Effective Reynolds number for He-II

Effective Taylor microscale ത𝝀 is defined by

ത𝝐𝐢𝐧𝐣= 𝟏𝟓 ഥ𝝂𝐞𝐟𝐟
𝒖𝐫𝐦𝐬

ത𝝀

𝟐

or equivalently  

ത𝝐𝝂 = 𝟏𝟓ഥ𝝂
𝒖𝐫𝐦𝐬

ത𝝀

𝟐

𝑹ത𝝀 =
𝒖𝐫𝐦𝐬

ത𝝀

ഥ𝝂𝐞𝐟𝐟
∼ 𝐑𝐞



Mutual friction for He-II mixture  is essentially a dissipative process that adds to viscous dissipation at very scale scales

Numerical Results from Pseudo-Spectral Simulations
4

3
ҧ𝜖inj𝑟 = −𝑆3 𝑟 + 2 ҧ𝜈

d 𝑆2 𝑟

dr
+ 𝜑𝑛𝑠(𝑟)



Controversy on intermittency in Quantum Turbulence 
Experimental results

❑ ``Intermittency of QT with superfluid fraction from 0% to 96%’’
E. Rusaouen, B. Chabaud, J. Salort, P-E Roche 
Phys. Fluids 29, 105108 (2017)

Experimental studies : 

❑ ``Intermittency enhancement in quantum turbulence in superfluid 4He’’
Emil Varga, Jian Gao, Wei Guo, and Ladislav Skrbek
Phys. Rev. Fluids 3, 094601 (2018)

``… measurements reveal temperature-dependent intermittency corrections (on transverse velocity structure functions) that peak in 
the vicinity of 1.85K in excellent agreement with recent theoretical predictions …’’

``… No evidence of temperature dependence is found on these scaling exponents in the upper part of the inertial cascade, where 
turbulence is well developed and fully resolved by the probe…’’

❑ ``Local investigation of superfluid turbulence’’
J. Maurer and P. Tabeling
Europhys. Lett. 43 (1), pp. 29-34 (1998) 



Numerical studies : 

❑ ``Enhancement of Intermittency in Superfluid Turbulence’’
Laurent Boué, Victor L’vov, Anna Pomyalov, and Itamar Procaccia
Phys. Rev. Lett. 110, 014502 (2013)

❑ “Multiscaling in superfluid turbulence: A shellmodel study” 
V. Shukla and R. Pandit
Phys. Rev. E 94, 043101 (2016)

❑ ``Turbulent statistics and intermittency enhancement in coflowing superfluid 4He’’
L. Biferale, D. Khomenko, V. L'vov, A. Pomyalov, I. Procaccia, and G. Sahoo
Phys. Rev. Fluids 3, 024605 (2018)

Controversy on intermittency in Quantum Turbulence 
Numerical results

``…The energy transfer by mutual friction between components is particularly efficient in the temperature range between 1.8 and 2 K, 
leading to enhancement of small-scale intermittency for these temperatures…’’



Flatness of longitudinal increments for normal fluid and superfluid components

Inset = results from Biferale et al.

classical turbulence

Enhancement of intermittency due to dissipative effects
depends on temperature through the mutual friction

Universal scaling exponent for all temperatures 
similar to classical turbulence  



Conclusion – Take Home messages

❑ Mutual friction for He-II mixture is essentially a dissipative process that adds to viscous dissipation at very scale scales

viscous dissipation 

frictional dissipation 

energy cascade

energy cascade
viscous dissipation 

frictional dissipation 

This allows us to define an effective Kolmogorov scale ഥ𝜼 ∼
ത𝛎𝐞𝐟𝐟

𝟑

ത𝝐𝐢𝐧𝐣

𝟏

𝟒
with   ഥ𝝂𝐞𝐟𝐟 = ഥ𝝂 ×

ത𝝐𝐢𝐧𝐣

ത𝝐𝐢𝐧𝐣−𝝐𝐧𝐬

𝐑𝐞 =
𝒖𝐫𝐦𝐬𝑳𝟎
ഥ𝝂𝐞𝐟𝐟

∼
𝑳𝟎
ഥ𝜼

𝟑
𝟒

and an effective Reynolds number 



Conclusion – Take Home messages

❑ In the inertial range, the energy cascade remains the dominant dynamical process :
- the two fluid components are locked 
- scaling properties agree with that of classical turbulence for all temperatures

Fully consistent with Zhang Z, Danaila I, Lévêque E, Danaila L.  
``Higher-order statistics and intermittency of a two-fluid Hall-Vinen-Bekharevich-Khalatnikov quantum turbulent flow’’ J. Fluid Mech.. 2023;962:A22

F(𝑟) ∼ 𝑟 −0.113 for classical turbulence

classical turbulence


