CÔTE D'AZUR

Quantum turbulence: From the Kolmogorov cascade to sound emission, passing by Kelvin waves and vortex reconnections.

Giorgio Krstulovic

Laboratoire J-L Lagrange
Université de la Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Nice, France Cargèse, July 2023

In collaboration with

University of East Anglia.

 Norwich, UK

Davide Proment

Alberto Villois (Now in Torino)
()bservatoire
de la COTE d'AZUR

Umberto Giuriato
Former PhD. Student

Nicolas Müller Former PhD. Student

Le calcul intensif au service de la connaissance

Superfluids

Superfluid ${ }^{4} \mathrm{He}$

$$
T \sim 2 K
$$

They have no viscosity !

Helium phase diagram

Picture from: Low Temperature Laboratory, Aalto University webpage

Landau-Tiszla description of superfluid helium

Two immiscible fluids:
 \rightarrow normal (viscous) fluid of density ρ_{n}
 \rightarrow superfluid of density ρ_{s}
 $$
\begin{aligned} & \rho=\rho_{\mathrm{n}}+\rho_{\mathrm{s}} \\ & \mathbf{P}=\rho_{\mathrm{n}} \mathbf{v}_{\mathrm{n}}+\rho_{\mathrm{s}} \mathbf{v}_{\mathrm{s}} \end{aligned}
$$

Today's talk

Length scales of superfluid turbulence

energy
injection
$\sim m$

Classical (Kolmogorov) turbulence

SHREK (France)
inter-vortex distance
$\sim 10^{-5} \mathrm{~m}$

Kelvin wave cascade \& vortex reconnections
coherence length vortex core size
ξ

Experiments: Maurer et al. (1998), Salort et al. (2010), Tang et al. (2021),
Simulations in GP: Nore et al. (1997), Kobayashi et al. (2005),
Simulations in vortex-filament method: Baggaley et al. (2012),

G. Bewley et al. Nature 2006.

Quantum vortices and turbulence

At "zero-temperature", a superfluid has no viscosity
Compressible fluid (and dispersive)
Described by a complex order parameter (wave function)
Quantum vortices (filaments) are naturally present in turbulent states

Quantum vortices

-Finite core-size
Continuous circulation

- Topological defects

Quantised circulation

Modeling superfluid helium
 Multi-scale physics

Scales

vortex core size

mean inter-vortex distance
ℓ

Modeling superfluid helium

Multi-scale physics

Scales

Classical fluid (Navier-Stokes)

Modeling superfluid helium
 Multi-scale physics

Scales

vortex core size
$T=0$
mean inter-vortex distance
ℓ

Gross-Pitaevskii based model

Classical fluid (Navier-Stokes)

The Gross-Pitaevskii equation
 Modelling low-temperature superfluids

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+g|\psi|^{2} \psi, \quad g=\frac{4 \pi a \hbar^{2}}{m}
$$

Linearising about a flat state:

$$
\psi=A_{0} e^{-i \frac{\mu}{\hbar} t}+\delta \psi
$$

Bogoliubov dispersion relation:

$$
\omega(k)=c k \sqrt{1+\frac{1}{2} \xi^{2} k^{2}}
$$

$$
\omega(k)=\sqrt{\frac{g\left|A_{0}\right|^{2}}{m} k^{2}+\frac{\hbar^{2}}{4 m^{2}} k^{4}} .
$$

$$
\begin{array}{cl}
\text { Speed of sound } & c=\sqrt{g\left|A_{0}\right|^{2} / m} \\
\text { Coherence length } & \xi=\sqrt{\hbar^{2} / 2 m\left|A_{0}\right|^{2} g}
\end{array}
$$

Hydrodynamics?

$i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+g|\psi|^{2} \psi$,

$$
\begin{aligned}
\text { Speed of sound } & c=\sqrt{g\left|A_{0}\right|^{2} / m} \\
\text { Coherence length } & \xi=\sqrt{\hbar^{2} / 2 m\left|A_{0}\right|^{2} g}
\end{aligned}
$$

Madelung transformation

$$
\psi(\mathbf{x}, t)=\sqrt{\frac{\rho(\mathbf{x}, t)}{m}} \exp \left[i \frac{m}{\hbar} \phi(\mathbf{x}, t)\right]=\sqrt{\frac{\rho(\mathbf{x}, t)}{m}} \exp \left[i \frac{\phi(\mathbf{x}, t)}{\sqrt{2} c \xi}\right]
$$

density of particles

$$
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \nabla \phi)=0
$$

$$
\frac{\partial \phi}{\partial t}+\frac{1}{2}(\nabla \phi)^{2}=c^{2}(1-\rho)+c^{2} \xi^{2} \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} .
$$

$$
\rho=|\psi|^{2} \quad \mathbf{v}=\nabla \phi \quad \text { is a potential flow }
$$

Quantum vortices

$\mathbf{v}=\nabla \phi$ is a potential flow but:
Vortices are topological defects: $\psi(\mathbf{x})=\mathbf{0}$

$$
\Gamma=\oint_{\mathcal{C}} \nabla \phi \cdot \mathrm{d} \ell=\phi^{+}-\phi^{-}
$$

$$
\Gamma=n \frac{h}{m}=n 2 \pi \sqrt{2} c \xi, \quad \text { with } n \in \mathbb{Z}
$$

Points in $2 D$ and lines in $3 D$

$$
\mathbf{v} \sim \frac{1}{r} \Rightarrow \nabla \times \mathbf{v} \sim \delta(\mathbf{r})
$$

$$
\mathbf{w}(\mathbf{x})=\nabla \times \mathbf{v}=\frac{h}{m} \oint \delta(\mathbf{x}-\mathbf{s}(\ell)) \frac{\mathrm{d} \mathbf{s}(\ell)}{\mathrm{d} \ell} \mathrm{~d} \ell
$$

Quantum vortices

$\mathbf{v}=\nabla \phi$ is a potential flow but:

Vortices are topological defects: $\psi(\mathbf{x})=\mathbf{0}$

$$
\Gamma=\oint_{\mathcal{C}} \nabla \phi \cdot \mathrm{d} \ell=\phi^{+}-\phi^{-}
$$

Gross-Pitaevskii model

Collection of "ideal" vortex filaments:

- Velocity field $\vec{v}=\frac{\Gamma}{2 \pi r} \hat{\theta}$
- Core size ξ (small)

Density ρ
Euler equation + small-scale dispersion regularisations

$$
\mathbf{w}(\mathbf{x})=\nabla \times \mathbf{v}=\frac{h}{m} \oint \delta(\mathbf{x}-\mathbf{s}(\ell)) \frac{\mathrm{d} \mathbf{s}(\ell)}{\mathrm{d} \ell} \mathrm{~d} \ell
$$

Vortex fllament method

$$
\text { At } T=0
$$

$$
\mathbf{v} \sim \frac{1}{r} \Rightarrow \nabla \times \mathbf{v} \sim \delta(\mathbf{r})
$$

Collection of vortex

 filaments $\mathscr{C}$$$
\text { Vorticity field } \omega_{\mathbf{s}}(\mathbf{x})=\Gamma \oint_{\mathscr{C}} \delta(\mathbf{x}-\mathbf{s}(\zeta)) \frac{d \mathbf{R}}{d \zeta} d \zeta
$$

Velocity field

$$
\mathbf{v}_{\mathbf{s}}(\mathbf{x})=-\frac{1}{4 \pi} \int \frac{(\mathbf{x}-\mathbf{y})}{|\mathbf{x}-\mathbf{y}|^{3}} \times \omega(\mathbf{y}) d^{3} \mathbf{y}=-\frac{\Gamma}{4 \pi} \oint_{\mathscr{C}} \frac{\mathbf{x}-\mathbf{s}(\zeta)}{|\mathbf{x}-\mathbf{s}(\zeta)|^{3}} \times \frac{d \mathbf{R}}{d \zeta} d \zeta
$$

$$
\frac{d \mathbf{R}(\zeta, \mathbf{t})}{d t}=\mathbf{v}_{\mathbf{s}}(\mathbf{R}(\zeta, t))
$$

Length scales of

Today's talk

energy
injection
$\sim m$

Classical (Kolmogorov) turbulence
.......

inter-vortex distance
$\sim 10^{-5} m$

Kelvin wave cascade
\& vortex reconnections
coherence length
vortex core size

Kelvin waves

XXIV. Vibrations of a Columnar Vortex. By Sir William Thomson*.

T HIIS is a case of fluid-motion, in which the stream-lines are approximately circles, with their centres in one line (the axis of the vortex) and the velocities approximately constant, and approximately equal at equal distances from the axis. As a preliminary to treating it, it is convenient to ex-

Sir William Thomson (I880) XXIV. Philosophical Magazine Series 5, 10:6I, I55-I68,
Take the incompressible Euler's equations

$$
\begin{gathered}
\mathbf{v}_{0}(r, \theta, z)=\frac{\alpha(r)}{r} \hat{\theta} \quad \text { and } \quad p(r, \theta, z)=p_{0}(r)=\rho_{0} \int_{a_{0}}^{r} \frac{\alpha(s)^{2}}{s^{3}} \mathrm{~d} s \\
\qquad=\oint_{\mathcal{C}} \mathbf{v} \cdot \mathrm{d} \ell=2 \pi \alpha(r) \\
\text { Kelvin Waves: } \quad \mathbf{v}=\mathbf{v}_{0}+\delta \mathbf{v}+\ldots
\end{gathered}
$$

Kelvin waves

$\delta v(\theta, z) \sim \cos (k z) \sin (n \theta-\omega t)$

$$
\omega_{n}^{ \pm}(k)=\frac{\Gamma}{2 \pi a_{0}^{2}}\left(n \pm \sqrt{n+\frac{a_{0}|k| K_{n-1}\left(a_{0}|k|\right)}{K_{n}\left(a_{0}|k|\right)}}\right)
$$

$n=1$ and $k a_{0} \ll 1$

$$
\left.\omega^{-}(k)=-\frac{\Gamma}{8 \pi} k^{2} \log \frac{1}{a_{0}|k|}+b\right), \text { with } b=\log 2-\gamma_{\mathrm{E}}
$$

Vortex excitations in superfluids (GP)

Hydrodynamics
P.H. Roberts. Proc. Royal Society of London A:(2003)

$$
k \ll \frac{1}{\xi}
$$

$$
\begin{aligned}
\Omega_{\mathrm{KW}}\left(k a_{0} \rightarrow 0\right) & =-\frac{\Gamma}{4 \pi} k^{2}\left(\ln \frac{2}{a_{0}|k|}-\gamma_{\mathrm{E}}\right) \\
a_{0} & =1.265 \xi
\end{aligned}
$$

GP numerical simulations

U. Giuriato, G. Krstulovic and S. Nazarenko. Phys. Rev. Research (2020)

Vortex excitations in superfluids (LIA)

Local Induced Approximation (LIA)

$$
\dot{\mathbf{s}}=\frac{\Gamma \Lambda}{4 \pi R} \widehat{\mathbf{b}}=\frac{\Gamma \Lambda}{4 \pi} \mathbf{s}^{\prime} \times \mathbf{s}^{\prime \prime}
$$

Small amplitudes Kelvin waves

$$
\begin{aligned}
& s(z, t)=X(z, t)+i Y(z, t) \\
& i \Gamma \dot{s}=\frac{\delta H_{\mathrm{LIA}}}{\delta s^{*}}=-\frac{\Gamma^{2} \Lambda}{4 \pi} \frac{\partial^{2} s}{\partial z^{2}}, \quad \text { with } \quad H_{\mathrm{LIA}}=\frac{\Gamma^{2} \Lambda}{4 \pi} \int\left|\frac{\partial s}{\partial z}\right|^{2} \mathrm{~d} z \\
& \omega_{\mathrm{LIA}}(k)=-\frac{\Gamma \Lambda}{4 \pi} k^{2}
\end{aligned}
$$

Kelvin-wave cascade

Vortex filament model

Biot-Savart description of a perturbed straight vortex
[Sonin 87 - Svistunov 95]

$$
\begin{aligned}
& s(z, t)=X(z, t)+i Y(z, t) \\
& i \Gamma \dot{s}(z)=\frac{\delta H_{\mathrm{NL}}}{\delta s^{*}(z)}, \quad H_{\mathrm{NL}}=\frac{\Gamma^{2}}{4 \pi} \int \frac{1+\mathcal{R} e\left[s^{\prime *}\left(z_{1}\right) s^{\prime}\left(z_{2}\right)\right]}{\sqrt{\left(z_{1}-z_{2}\right)^{2}+\left|s\left(z_{1}\right)-s\left(z_{2}\right)\right|^{2}}} \mathrm{~d} z_{1} \mathrm{~d} z_{2}
\end{aligned}
$$

Small amplitude waves:

$$
\begin{gathered}
H_{\mathrm{NL}}=\sum_{k} \omega_{k}\left|s_{k}\right|^{2}+H_{4}+H_{6}+\ldots \\
\quad \omega_{k}=-\frac{\Gamma}{4 \pi} k^{2}(\log (k \ell)-\Lambda)
\end{gathered}
$$

Vortex motion and Kelvin wave cascade

Wave turbulence predictions

Kozik-Svistunov (2004) :
(6 waves)

$$
\begin{gathered}
E_{\mathrm{KS}}(k)=C_{\mathrm{KS}} \frac{\Lambda \kappa^{7 / 5} \epsilon^{1 / 5}}{k^{7 / 5}} \\
\Lambda=\ln (\ell / a)
\end{gathered}
$$

a (wave-turbulence) controversy!!

L'vov-Nazarenko (2010):
(effective 4 wave theory)

$$
\begin{gathered}
E_{\mathrm{LN}}(k)=C_{\mathrm{LN}} \frac{\Lambda \kappa \epsilon^{1 / 3}}{\Psi^{2 / 3} k^{5 / 3}}, \quad \Psi \equiv \frac{8 \pi E}{\Lambda \kappa^{2}} \\
C_{\mathrm{LN}}=0.304
\end{gathered}
$$

- Kivotides, Vassilicos, Samuel, Barenghi PRL 200I
-E. Kozik \& B. Svistunov. PRL 2004
-L'vov \& Nazarenko JETP 2010
-Boué et al PRB 20II
-Laurie and Baggaley PRE 2014
-many others works....

Kelvin-wave cascade

Numerical simulations

We consider a perturbed straight vortex:

Biot-Savart dynamics:

$$
\begin{aligned}
i \Gamma \dot{s}(z) & =\frac{\delta H_{\mathrm{NL}}}{\delta s^{*}(z)}, \quad H_{\mathrm{NL}}=\frac{\Gamma^{2}}{4 \pi} \int \frac{1+\mathcal{R} e\left[s^{\prime *}\left(z_{1}\right) s^{\prime}\left(z_{2}\right)\right]}{\sqrt{\left(z_{1}-z_{2}\right)^{2}+\left|s\left(z_{1}\right)-s\left(z_{2}\right)\right|^{2}}} \mathrm{~d} z_{1} \mathrm{~d} z_{2} \\
\dot{\mathbf{s}}(\zeta) & =\frac{\Gamma}{4 \pi} \oint \frac{\mathrm{~d} \mathbf{s}\left(\zeta^{\prime}\right) \times\left(\mathbf{s}(\zeta)-\mathbf{s}\left(\zeta^{\prime}\right)\right)}{\mid \mathbf{s}(\zeta)-s\left(\left.\zeta^{\prime}\right|^{3}\right.}
\end{aligned}
$$

Non-local equation, needs to be regularised, dissipation is added in an ad-hoc manner

Gross-Pitaevskii dynamics: $\quad i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+g|\psi|^{2} \psi$,
3D PDE but everything is regular. Effective dissipation is provided by acoustic emission.
One gets $\psi(x, y, z, t)$ but we need a filament $\mathbf{s}(z, t)$!

Tracking vortices

G. Krstulovic

PRE 86, $055301(\mathrm{R}),(20 \mathrm{I} 2)$

Isosurface

Tracked lines

- Highly accurate (spectral precision)
- Geometry independent
- Arbitrary number of objects
A.Villois, G. Krstulovic, D. Proment and H. Salman. J. Phys. A (2016)

Superfluid turbulence

energy
injection

Classical (Kolmogorov)
turbulence

Kelvin wave cascade vortex core
inter-vortex distance
size sound emission
$\rightarrow \ell_{I}$
size

Is the Kelvin wave cascade relevant for a

turbulent tangle?

Quantum turbulence

Kelvin waves in a turbulent tangle

Quantum turbulence

Kelvin wave cascade

Quantum turbulence

Strong turbulence

Kolmogorov scaling for the energy spectrum (K41)

$$
\begin{gathered}
E(k)=C_{\mathrm{K}} \epsilon^{2 / 3} k^{-5 / 3} \\
k_{0} \ll k \ll k_{\ell}
\end{gathered}
$$

Weak wave turbulence

Kelvin wave scaling for the energy spectrum

$$
\begin{gathered}
E(k) \sim \kappa \epsilon^{1 / 3} \ell^{-4 / 3} k^{-5 / 3} \\
k_{\ell} \ll k \ll k_{\xi}
\end{gathered}
$$

Non-local high-order nonlinearity GP

Simultaneous observation of two cascades

Quantum turbulence

	Initial condition		Turbulence	
	k_{0}	L / ξ	ϵ	ℓ / L
$-=-=-$	2	341	0.01	0.412
-	2	171	0.01	0.494
-	2	341	0.01	0.255
-	3	341	0.02	0.235
-	4	341	0.03	0.227
-	2	683	0.01	0.139

Energy spectrum compensated by Kolmogorov spectrum

Energy spectrum compensated by Kelvin wave spectrum

Vortex reconnections

Experiments in water

Kleckner \& Irvine. Nature
Phys. 2013

Numerical simulations of classical fluids

Navier-Stokes equations

Numerical simulations of superfluids

Gross-Pitaevskii model

Ideal for a theoretical description! $\quad \xi \ll R$

Minimal vortex distance

Dimensional analisys: $\quad \xi$:vortex core size $\quad \delta$:minimal distance $\quad R$:system size

$\xi \ll \delta \ll R$ between vortices

$$
\delta^{ \pm}(t)=A^{ \pm}\left|\Gamma\left(t-t_{r}\right)\right|^{1 / 2}
$$

Minimal vortex distance

Minimal vortex distance

Analytic calculations	ξ : vortex core size	δ : minimal distance	R : system size
$\Gamma=\oint_{L^{2}} \mathbf{v} \cdot \mathrm{~d} \ell$			
$[\Gamma]=\frac{L^{-}}{T}$	$\xi \ll \delta \ll L$		
		$\delta^{ \pm}(t)=A^{ \pm}\left\|\Gamma\left(t-t_{r}\right)\right\|^{1 / 2}$	

Previous works reported different exponents:

Zuccher et al Phys Fluids (20|3)
Allen et al. PRA (20|4)
Rorai et al.JFM (20|6)

Quantum vortex filaments

4 study cases

Tangle
d.1)
d.2)

Separation rates

a.1)
b.1)
c.1)
d.1)
,

a.2)

b.1)

c.1) Trefoil knot
d.1)

b.2)

Geometry of reconnections

$$
\begin{aligned}
& \text { 米 } A^{+} \geq A^{-} \text {: vortices separate } \\
& \text { faster than they approach }
\end{aligned}
$$

Linear (Schrodinger equation) theory:
粦 A^{+} / A^{-}controls curvature, torsion and approach angle:

$$
\frac{A^{+}}{A^{-}}=\cot \left(\frac{\phi^{+}}{2}\right)
$$

$$
\frac{A^{+}}{A^{-}} \geqq 1 \Longleftrightarrow \phi^{+} \Longleftarrow \frac{\pi}{2}
$$

$$
\delta^{ \pm}(t)=A^{ \pm}\left|\Gamma\left(t-t_{r}\right)\right|^{1 / 2}
$$

Quantum vortex reconnections

Physical
REVIEW
LETTERS

More than 40 reconnections

QUANTUM VORTEX RECONNECTIONS Sound emission and irreversibility

Quantum vortex reconnections

Vortex separate faster than they approach

Matching theory

Analytical theory based on conservation of momentum and energy

Quantum vortex reconnections

A more general ansatz

$$
\psi_{r}(x, y, z)=z+\frac{\gamma}{a}\left(x^{2}+y^{2}\right)+i\left(a z+\beta x^{2}-y^{2}\right)
$$

torsion

$\psi(\mathbf{x}, t)=e^{i \frac{1}{2}\left(t-t_{r}\right) \nabla^{2}} \psi_{r}(\mathbf{x})$

$$
\psi(\mathbf{x}, t)=0
$$

$$
\mathbf{R}_{1,2}^{-}(s, t)=\left(s, \pm \sqrt{\frac{\left(t_{r}-t\right)\left(a^{2}(1-\beta)-2 \gamma\right)+a s^{2}(\beta-\gamma)}{a(\gamma+1)}},\right.
$$

$$
\left.\frac{\left(t-t_{r}\right)\left(a^{2}(\beta-1)-2 \gamma^{2}\right)-a \gamma(\beta+1) s^{2}}{(\gamma+1) a^{2}}\right)
$$

$$
\delta^{ \pm}(t)=\left|\mathbf{R}_{1}^{ \pm}(0, t)-\mathbf{R}_{2}^{ \pm}(0, t)\right|=\sqrt{2 \pi} A^{ \pm}\left|t-t_{r}\right|^{1 / 2}
$$

time

$$
\begin{gathered}
\mathbf{P}^{-}=\frac{\Gamma}{2} \oint \mathbf{R}^{-} \times \mathrm{d} \mathbf{R}^{-} \\
E_{\text {kin }}^{-} \propto \Gamma^{2} \oint\left|\mathrm{~d} \mathbf{R}^{-}\right|
\end{gathered}
$$

Momentum

$$
\mathbf{P}^{+}=\frac{\Gamma}{2} \oint \mathbf{R}^{+} \times \mathrm{d} \mathbf{R}^{+}
$$

Energy

$$
E_{\text {kin }}^{+} \propto \Gamma^{2} \oint\left|\mathrm{~d} \mathbf{R}^{+}\right|
$$

$$
\Delta \mathbf{P}=\mathbf{P}^{+}-\mathbf{P}^{-}
$$

$$
\Delta E_{\mathrm{kin}}=E_{\mathrm{kin}}^{+}-E_{\text {kin }}^{-}
$$

$\frac{A^{+}}{A^{-}}=\sqrt{\frac{1+\gamma}{\beta-\gamma}}$

Quantum vortex reconnections

Numerical measurements

QuantumVIW project

Kelvin waves

Vortex reconnections

