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They have no viscosity !

Superfluids

Superfluid 4He

Kapitsa, Allen and Misener, 1937 

T ∼ 2K

 Picture from: Low Temperature Laboratory,  
Aalto University webpage

Helium phase diagram

Chapter 1

Superfluid turbulence. From nanometres
to metres

This chapter presents a brief introduction to superfluids. We discuss some of the main theoretical and

experimental achievements, from the discovery of superfluid helium to the first experimental realisation

of a Bose-Einstein condensate. We provide a general description of superfluid turbulence and discuss

the physical phenomena taking place at di↵erent length scales.

What are superfluids and where can we find them?

In very general terms, superfluids form a particular category among compressible fluids, distinguished
essentially by the absence of molecular viscosity at very low temperatures. Perhaps, the most famous
one is 4He that becomes superfluid below 2.1768K. The superfluidity of helium was discovered almost
simultaneously by J.F Allen and A.D Misener [AM38] and P. Kapitsa [Kap38] in 1938, and published
in the same issue of Nature. Figure 1.1 (left) shows the phase diagram of 4He. The line separating the
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Figure 1.1: Left: Phase diagram of 4He taken from Low Temperature Laboratory, Aalto University web
page. Right: Normal and superfluid density ⇢s and ⇢n, normalised by the total helium density ⇢. Data
taken form [BD77].

superfluid and the normal fluid is called the �-line. Its name comes from the specific heat of helium,
because its curve, as a function of temperature, resembles the Greek letter �, having a peak at the
transition temperature. This critical temperature is often denoted by T�. Its name was suggested by
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Landau-Tiszla description of superfluid helium

Two immiscible fluids:
✦normal (viscous) fluid of density 
✦superfluid of density 

ρn
ρs

ρ = ρn + ρs
P = ρnvn + ρsvs

Today’s talk
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FIG. 1. (a)-(c) Sequences of 20 images of the density distri-
bution of the atoms extracted from three BECs; frames are
taken every �t = 84 ms, each after a 13 ms expansion. (a)
Static vortex. (b)-(c) Vortices precessing with di↵erent am-
plitudes. Each vortex is randomly oriented in the xy plane
and, after expansion, it forms a planar density depletion [23]
which is visible as a stripe. (d)-(i) Sequences with two and
three vortices, with �t = 28 ms; here frames are not to scale
and vertically squeezed to enhance visibility. (j)-(m) Destruc-
tive absorption images of the whole BEC taken along the ax-
ial direction z after 120 ms of expansion, showing (j) a single
vortex filament crossing the condensate from side to side and
(k)-(m) two vortices with di↵erent relative orientation and
shape. All images show the residuals after subtracting the
fitting TF profile.

tion sequence the remaining condensate evolves in trap,
only weakly a↵ected by atom number change, provided
�N/N(t) is su�ciently small. We can then identify the
axial position of the vortex in each image of the outcou-
pled atoms and analyze its oscillation as a faithful rep-
resentation of the in-trap dynamics. Typical examples
are shown in Figs. 1(a)-1(i) . Alternatively we image the
full BEC along the axial direction after a long expan-
sion with a destructive technique as in [22] and directly
see the shape and orientation of the vortex lines as in
Figs. 1(j)-1(m).

We first choose an evaporation rate of 525 kHz/s, yield-
ing one vortex in each BEC on average. From the se-

quence of radial images we extract the axial position of
each vortex z(t). Frames are recorded every �t = 84 ms.
Figures 2(a) and 2(b) show two examples corresponding
to the raw images of Figs. 1(b) and 1(c), respectively.
The observations are consistent with a vortex precession
around the trap center, as the one observed in oblate
BECs [16, 33]. In a nonrotating elongated condensate,
a straight vortex line, oriented in a radial plane, is ex-
pected to follow an elliptic orbit in a plane orthogonal to
the vortex line, corresponding to a trajectory at constant
density [34]. The observed motion of each dark stripe in
Figs. 1(a)-1(c) is the axial projection of such a precession.
Given ro = zmax/Rz = ymax/R? the in-trap amplitude of
the orbit normalized to the TF radii R? =

p
2µ/(m!2

?)

and Rz =
p

2µ/(m!2
z) [32], the precession period is pre-

dicted to be

T =
4(1� r2o)µ

3~!? ln(R?/⇠)
Tz , (1)

where Tz = 2⇡/!z is the axial trapping period and ⇠ is
related to the chemical potential µ by ⇠ =

p
~2/(2mµ).

This result, which is valid to logarithmic accuracy, has
been derived for a disk-shaped nonaxisymmetric conden-
sate in Refs. [35, 36] within the Gross-Pitaevskii theory
at T = 0 and in the TF approximation, corresponding to
R?/⇠ � 1 (in our case, R?/⇠ ranges from 60 to 20). It
can also be obtained by means of the superfluid hydro-
dynamic approach introduced in Ref. [37] to describe the
motion of vortex rings in elongated condensates, appro-
priately generalized to the case of solitonic vortices as in
Ref. [24]. The quantity µ(1 � r2o) is the local chemical
potential along the vortex trajectory and we assume ro to
be constant during expansion, as distances are expected
to scale in the same way in the slow axial expansion.
In comparing the observed period with Eq. (1) we must

consider that the number of atoms is decreasing from shot
to shot. Since extraction is spatially homogeneous, the
gradients of the density, and hence the equipotential lines
for the vortex precession and the orbit amplitude remain
almost unchanged. However, N(t) (hence µ / N2/5)
decreases in time and so does the vortex orbital period
T , as is clearly visible in Figs. 2(a) and 2(b). We de-
fine an instantaneous period at time t as the period ob-
tained from a sinusoidal fit to the measured position in a
time interval centered at t and containing about one os-
cillation. Such T (t) is plotted in Fig. 2(c) and 2(d) and
compared to Eq. (1), where we include the e↵ect of the
observed t dependence on N , shown in Fig. 2(e), both in
µ and ⇠. The agreement is good, the major limitation
being the experimental uncertainty in N . We also show
the period expected for the oscillation of a dark or grey
soliton, which is

p
2 Tz independently of N [38, 39]. In

Fig. 2(f) we plot the period of vortices orbiting with dif-
ferent amplitude ro. The agreement with theory is again
good and can be further appreciated by considering the
ratio between each value of T measured at a given ro and
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Perpendicular Antiparallel Trefoil knot Tangle

FIG. 1. Three-dimensional plot showing the reconnection events explored numerically. The initial
configuration is displayed for (a1) the perpendicular vortex lines, (b1) the antiparallel lines, and (c1) the
trefoil knot. (a2)–(c2) show a corresponding zoom at the moment of reconnection. Also shown are (d1) the
turbulent tangle and (d2) a zoom in of where a reconnection takes place. Red and blue correspond to the
reconnecting vortex filaments; the light blue isosurfaces render the density field at low values.

III. APPROACH AND SEPARATION RATES139

Apart from the characteristic length scale ξ inherently present in the GP model, when quantized140

vortices are considered, the quantum of circulation " can be used to formulate an extra length scale.141

Hence, by dimensional analysis, the distance between two reconnecting lines is expected to be142

δ±(t) = A±ξ 1−2α± |"(t − tr )|α±
, (4)

where α± and A± are dimensionless parameters and the superscript ± stands for before (−) and after143

(+) the reconnection event. The temporal evolution of the minimal distances between reconnecting144

filaments for the different case studies is displayed in Figs. 2(a)–2(d). An explanatory movie of145

the knot reconnection is also provided as Supplemental Material [34]. Remarkably, in all cases2 146

the approach and separation rates follow the same dimensional t1/2 scaling. For each event we147

estimate the reconnection time tr by doing a linear fit on δ±(t)2 and compute tr as the arithmetic148

mean between t±r that satisfies δ±(t±r )2 = 0. The t1/2 scaling extends beyond ξ and only slight149

deviations are observed in some cases. Perhaps this fact could explain the different results for150

the scaling obtained in Refs. [16–18], where it was concluded that the exponents before and after151

the reconnection are different. For instance, in Ref. [16] it was found that α− ∈ (0.3,0.44) and152

α+ ∈ (0.6,0.73) and in Ref. [18] that either α± = 1/2 or α− = 1/3 and α+ = 2/3, depending on153

the initial vortex filament configuration. In these works the time asymmetry was interpreted as a154

manifestation of the irreversible dynamics due to sound emission; we will return to this interesting155

point in Sec. VI. Let us stress that the tracking algorithm we used is able to measure the intervortex156

distances even in the presence of sound waves (the Taylor-Green tangle analyzed contains moderate157

sound at all scales) and no asymmetry concerning the exponent is observed.158

Although the measured exponent is always α± = 1/2, the full dynamics is not symmetrical with159

respect to the reconnection time as it can be immediately deduced by observing Fig. 2. By estimating160

the prefactors A± with a fit, shown in Fig. 3(a), we conclude that these are always order of the unity161

but are not universal. Moreover, we observe that the vortex filaments usually separate faster than162

they approach (A− ! A+).163
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Quantum vortices and turbulence
At “zero-temperature”, a superfluid has no viscosity
Compressible fluid (and dispersive)
Described by a complex order parameter (wave function)
Quantum vortices (filaments) are naturally present in turbulent states 

Numerical simulation of Gross-Pitaevskii (a.k.a NLS) Müller, Krstulovic
Phys. Rev. B 102, 134513 (2020)
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Modeling superfluid helium
Multi-scale physics
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Kelvin-wave cascade and dissipation in low-temperature superfluid vortices

Giorgio Krstulovic
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We study the statistical properties of the Kelvin waves propagating along quantized superfluid vortices driven
by the Gross-Pitaevskii equation. No artificial forcing or dissipation is added. Vortex positions are accurately
tracked. This procedure directly allows us to obtain the Kevin-wave occupation-number spectrum. Numerical
data obtained from long time integration and ensemble average over initial conditions support the spectrum
proposed in L’vov and Nazarenko [JETP Lett. 91, 428 (2010)]. Kelvin-wave modes in the inertial range are found
to be Gaussian as expected by weak-turbulence predictions. Finally the dissipative range of the Kelvin-wave
spectrum is studied. Strong non-Gaussian fluctuations are observed in this range.

DOI: 10.1103/PhysRevE.86.055301 PACS number(s): 67.25.dk, 03.75.Kk, 47.37.+q, 67.25.dt

Superfluid turbulence has been the subject of many ex-
perimental and theoretical works for the last decades. It is
now possible to realize turbulent Bose-Einstein condensates
(BECs) [1], turbulent flows with 3He [2,3], and visualize
vortices in 4He [4]. As in classical turbulence [5], a Kol-
mogorov energy cascade has been observed experimentally
and numerically. In superfluids, this takes place at scales larger
than the mean intervortex distance ! [6–8]. At low temperature,
when damping due to mutual friction is negligible, it is
believed that dissipation at small scales is carried by phonon
radiation which dissipates energy into heat [9]. At scales
smaller than ! the energy is transferred down by a series
of reconnection processes of quantized vortices that excite
waves on the filaments. These perturbations, called Kelvin
waves (KWs), are known for more than one century [10]
in fluid dynamics. These waves obey a set of nonlinear
equations where the energy is transferred towards small
scales by a wave-turbulence cascade. The energy distribution
along different scales is crucial for the understanding of the
dissipative processes in superfluids. The energy spectrum of
such a cascade is not yet fully determined, except in the limit
of small-amplitude KWs, where the theory of weak turbulence
is applicable [11]. However, a heated debate on the locality of
KW energy transfer has taken place in the last years [12–17].
Two different groups, Kozik and Svistunov [18] and L’vov and
Nazarenko [19], starting from the very same equations and
by using the same theory, have derived two different spectra
(hereafter KS and LN spectra, respectively). The origin of this
controversy is mainly due to a symmetry argument by KS (tilt
of a vortex line) that eventually leads to a vanishing vertex in
the perturbative expansion. This leads to locality in the energy
transfer and makes the six-wave interaction theory realizable.
The energy spectrum found by KS is

EKS(k) ∼ ε1/5κ7/5k−7/5, (1)

where ε is the energy flux, κ is the circulation quantum, and k
is the wave vector. This symmetry argument was questioned by
LN and they claimed that the energy transfer is nonlocal. They
derived an effective four-wave interaction theory that leads to
the energy spectrum

ELN(k) ∼ κε1/3$−2/3k−5/3, (2)

where $ ∼ (1/κ)
∫

ELN(k)dk is the mean-square angular
deviation of the vortex. For more technical details on the con-
troversy see [13–17]. The exponent 7/5 = 1.4 and 5/3 ≈ 1.67
of (1) and (2) are supposed to be universal, but their relatively
close values makes it difficult to numerically elucidate which
theory is correct. A number of numerical works supporting
both theories have been published but none presenting strong
arguments to settle this controversy [17,20,21]. These works
are all done in the framework of the vortex filament with an
ad hoc dissipative mechanism. In the case of strong wave
turbulence, when the local slope of KW is order 1, weak
turbulence breaks down and Vinen et al. [22] propose a
spectrum scaling as k−1. Finally, It was suggested by Sonin
[16] that no universality can be expected.

In this Rapid Communication, we address the small-
amplitude KW cascade problem by performing direct numer-
ical simulations of the Gross-Pitaevskii equation (GPE). The
GPE describes a weakly interacting BEC at low temperature. It
is also expected to at least qualitatively reproduce the dynamics
of superfluid helium. As the Gross-Pitaevskii (GP) vortices can
naturally radiate and excite phonons no artificial dissipation
is needed. The (1D) KW occupation-number spectrum is
precisely obtained and data are found to support the wave-
turbulence prediction (LN) [19]. The KW spectrum is analyzed
within the dissipative range and an exponential decay is found.
Finally, the probability distribution function (PDF) of KW
amplitudes is observed to be Gaussian in the inertial range in
contrast with the power-law tails observed for modes in the
dissipative range.

The GPE describing a homogeneous BEC of volume V
with wave function ψ is given by

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ, (3)

where m is the mass of the condensed particles and g =
4πah̄2/m, with a the s-wave scattering length. Equation (3)
conserves the energy H =

∫
( h̄2

2m
|∇ψ |2 + g

2 |ψ |4)dx and the
number of particles N =

∫
|ψ |2dx. Madelung’s transforma-

tion ψ(x,t) =
√

ρ(x,t)
m

exp [i m
h̄
φ(x,t)] relates the wave function

ψ to a superfluid of density ρ(x,t) and velocity v = ∇φ,
where κ = h/m is the Onsager-Feynman quantum of velocity
circulation around the ψ = 0 vortex lines. When Eq. (3) is
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The Gross-Pitaevskii equation
Modelling low-temperature superfluids

Speed of sound
Coherence length

104 6: Truncated Gross-Pitaevskii equation. Thermalization, mutual friction and counterflow e�ects

6.1.2 Sound propagation

The simplest stable solution of eq.(6.1) correspond to a wave function of homogeneous
density |⇤|2 = |A0|2. The linearization of eq.(6.1) around the solution ⇤ = A0e�iµt

(with µ = g|A0|2/�) leads to the Bogoliubov dispersion relation

⌅(k) =

⌥
g|A0|2

m
k2 +

�2

4m2
k4. (6.21)

The sound velocity thus given by c =
⌃

g|A0|2/m and dispersive e�ects take place for
length scales smaller than the coherence length defined as

� =
⌃

�2/2m|A0|2g. (6.22)

� is also the length scale of the vortex core [27, 90].

6.1.3 Energy decomposition

Using the Madelung transformation (6.4) the energy can be decomposed into di�erent
terms of di�erent nature. Following Nore et al. [27] we define the total energy per unit
of volume etot as

etot =
1

V
[H � µN ]� µ2

2g
. (6.23)

This energy reexpressed in terms of the hydrodynamical variables reads

etot =
1

V

⇧
d3x

⇤
1

2
(
⇥

⇥v)2 +
g

2m

�
⇥� µ

gm

⇥2

+
�2

2m2
(⇤⇥⇥)2

⌅
(6.24)

We recognize three terms, the total kinetic energy Ekin, the internal energy Eint and
the quantum energy eq defined by

ekin =
1
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⇥v)2 (6.25)

eint =
1

V

⇧
d3x

g

2m2

�
⇥� µm

g

⇥2

(6.26)

eq =
1

V

⇧
d3x

�2

2m2
(⇤⇥⇥)2 . (6.27)

With this decomposition we have etot = ekin + eint + eq.
To separate the energy coming from sound waves, the total kinetic energy can be

further decomposed into compressible ec
kin and incompressible ei

kin by computing the
kinetic term as ⇥⇥v = (

⇥
⇥v)c + (

⇥
⇥v)i where ⇤ · (

⇥
⇥v)i = 0. This decomposition is

obtained applying the projector Pµ⇥ = ⇧µ⇧⇥ � �µ�

⇥2 . The incompressible kinetic energy

Bogoliubov dispersion relation:

Linearising about a flat state:  = A0e
�iµ

~ t + � 
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We study the statistical properties of the Kelvin waves propagating along quantized superfluid vortices driven
by the Gross-Pitaevskii equation. No artificial forcing or dissipation is added. Vortex positions are accurately
tracked. This procedure directly allows us to obtain the Kevin-wave occupation-number spectrum. Numerical
data obtained from long time integration and ensemble average over initial conditions support the spectrum
proposed in L’vov and Nazarenko [JETP Lett. 91, 428 (2010)]. Kelvin-wave modes in the inertial range are found
to be Gaussian as expected by weak-turbulence predictions. Finally the dissipative range of the Kelvin-wave
spectrum is studied. Strong non-Gaussian fluctuations are observed in this range.
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Superfluid turbulence has been the subject of many ex-
perimental and theoretical works for the last decades. It is
now possible to realize turbulent Bose-Einstein condensates
(BECs) [1], turbulent flows with 3He [2,3], and visualize
vortices in 4He [4]. As in classical turbulence [5], a Kol-
mogorov energy cascade has been observed experimentally
and numerically. In superfluids, this takes place at scales larger
than the mean intervortex distance ! [6–8]. At low temperature,
when damping due to mutual friction is negligible, it is
believed that dissipation at small scales is carried by phonon
radiation which dissipates energy into heat [9]. At scales
smaller than ! the energy is transferred down by a series
of reconnection processes of quantized vortices that excite
waves on the filaments. These perturbations, called Kelvin
waves (KWs), are known for more than one century [10]
in fluid dynamics. These waves obey a set of nonlinear
equations where the energy is transferred towards small
scales by a wave-turbulence cascade. The energy distribution
along different scales is crucial for the understanding of the
dissipative processes in superfluids. The energy spectrum of
such a cascade is not yet fully determined, except in the limit
of small-amplitude KWs, where the theory of weak turbulence
is applicable [11]. However, a heated debate on the locality of
KW energy transfer has taken place in the last years [12–17].
Two different groups, Kozik and Svistunov [18] and L’vov and
Nazarenko [19], starting from the very same equations and
by using the same theory, have derived two different spectra
(hereafter KS and LN spectra, respectively). The origin of this
controversy is mainly due to a symmetry argument by KS (tilt
of a vortex line) that eventually leads to a vanishing vertex in
the perturbative expansion. This leads to locality in the energy
transfer and makes the six-wave interaction theory realizable.
The energy spectrum found by KS is

EKS(k) ∼ ε1/5κ7/5k−7/5, (1)

where ε is the energy flux, κ is the circulation quantum, and k
is the wave vector. This symmetry argument was questioned by
LN and they claimed that the energy transfer is nonlocal. They
derived an effective four-wave interaction theory that leads to
the energy spectrum

ELN(k) ∼ κε1/3$−2/3k−5/3, (2)

where $ ∼ (1/κ)
∫

ELN(k)dk is the mean-square angular
deviation of the vortex. For more technical details on the con-
troversy see [13–17]. The exponent 7/5 = 1.4 and 5/3 ≈ 1.67
of (1) and (2) are supposed to be universal, but their relatively
close values makes it difficult to numerically elucidate which
theory is correct. A number of numerical works supporting
both theories have been published but none presenting strong
arguments to settle this controversy [17,20,21]. These works
are all done in the framework of the vortex filament with an
ad hoc dissipative mechanism. In the case of strong wave
turbulence, when the local slope of KW is order 1, weak
turbulence breaks down and Vinen et al. [22] propose a
spectrum scaling as k−1. Finally, It was suggested by Sonin
[16] that no universality can be expected.

In this Rapid Communication, we address the small-
amplitude KW cascade problem by performing direct numer-
ical simulations of the Gross-Pitaevskii equation (GPE). The
GPE describes a weakly interacting BEC at low temperature. It
is also expected to at least qualitatively reproduce the dynamics
of superfluid helium. As the Gross-Pitaevskii (GP) vortices can
naturally radiate and excite phonons no artificial dissipation
is needed. The (1D) KW occupation-number spectrum is
precisely obtained and data are found to support the wave-
turbulence prediction (LN) [19]. The KW spectrum is analyzed
within the dissipative range and an exponential decay is found.
Finally, the probability distribution function (PDF) of KW
amplitudes is observed to be Gaussian in the inertial range in
contrast with the power-law tails observed for modes in the
dissipative range.

The GPE describing a homogeneous BEC of volume V
with wave function ψ is given by

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ, (3)

where m is the mass of the condensed particles and g =
4πah̄2/m, with a the s-wave scattering length. Equation (3)
conserves the energy H =

∫
( h̄2

2m
|∇ψ |2 + g

2 |ψ |4)dx and the
number of particles N =

∫
|ψ |2dx. Madelung’s transforma-

tion ψ(x,t) =
√

ρ(x,t)
m

exp [i m
h̄
φ(x,t)] relates the wave function

ψ to a superfluid of density ρ(x,t) and velocity v = ∇φ,
where κ = h/m is the Onsager-Feynman quantum of velocity
circulation around the ψ = 0 vortex lines. When Eq. (3) is
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I. INTRODUCTION

Strong turbulent effective dissipation has been observed
to take place in inviscid and conservative systems, in the
context of !compressible" low-temperature superfluid turbu-
lence #1,2$. Vortices are thus subject to some significant dy-
namical dissipation mechanism. It has been suggested that
sound emission from the vortices is the major decay process
#3–5$. Detailed mechanisms are fully three dimensional
!3D". They involve initial vortex reconnection followed by
secondary excitation of long-wavelength helical waves,
known as Kelvin waves, along the vortex line and their sub-
sequent decay into sound waves #6$. It appears that evaluat-
ing these complicated 3D effects from first principles is a
formidable task at the present time.

The purpose of the present paper is to compute the sim-
pler analogous problem in two dimensions. We thus consider
sound emission produced by the interaction of several vorti-
ces in a 2D homogenous system obeying the nonlinear
Schrödinger !NLS" equation.

Our main result is that the far field, and thus the radiation
effect can be directly computed in terms of an assumed vor-
tex motion #see Eq. !17"$. These main formulas are then
applied to the simple test case of two corotating vortices,
reproducing theoretical estimates of the same test case #7,8$,
and the prediction is compared to the result of numerical
integrations of the NLS equation.

The paper is organized as follows. In Sec. II we establish
the basic proprieties of the NLS equation and recall the gen-
eral expression for the field produced by moving vortices.
Section III is devoted to the derivation of explicit trajectory-
dependent expressions for the radiative contribution to the
far field and the radiated energy flux. Section IV contains the
determination of vortex trajectories by numerical solutions of
the NLS and the comparison with theoretical predictions.
Discussion and conclusions are finally given in Sec. V.

II. NONLINEAR SCHRÖDINGER EQUATION

We consider the nonlinear Schrodinger equation !NLSE"
written with the physically relevant parameters: the coher-
ence length " and the sound velocity c,

i
!#

!t
=

c
%2"

!− "2$# − # + &#&2#" . !1"

This equation has Galilean invariance with the transforma-
tion #!x , t"→#!x−vt , t"ei!v·x−v2t/2" and it also has a Lagrang-
ian structure from which we can calculate an energy-
momentum tensor and the conserved quantities
corresponding to space-time translations #4$.

We can map the NLSE to hydrodynamics equations using
the Madelung transformation defined by

#!x,t" = %%!x,t" exp'i
&!x,t"
%2c"

( . !2"

Replacing Eq. !2" in the NLSE !1" and separating real and
imaginary parts we get

!%

!t
+ ! · !% ! &" = 0, !3"

!&

!t
+

1
2

!"&"2 = c2!1 − %" + c2"2$%%

%%
. !4"

We recognize here the continuity equation !3" for a fluid of
density % and velocity v=!& and the Bernoulli equation !4",
except for the last term which is usually called quantum
pressure since it has no analog in standard fluid mechanics !it
is proportional to '2 in the superfluidity context and it can be
neglected when the semiclassical limit is taken".

We note that, if the function # has a zero, the density % is
well defined but the phase & is undefined. The existence of a
zero requires the real and the imaginary parts of # to vanish
simultaneously and consequently these kind of singularities
generically appear as curves in 3D and points in 2D. These
topological defects have the property that their circulation is
a multiple of 4() !)=c" /%2", and for this reason they are
called quantum vortices in the context of superfluidity. In 2D
a stationary vortex solution centered at the origin can be
constructed in polar coordinates !% ,*" using the ansatz
%!r ,*"=%0!r"2 and &!r ,*"=2)m*, with m!Z the vortex

PHYSICAL REVIEW E 78, 026601 !2008"

1539-3755/2008/78!2"/026601!8" ©2008 The American Physical Society026601-1

Radiation and vortex dynamics in the nonlinear Schrödinger equation

Giorgio Krstulovic and Marc Brachet
Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, CNRS and Universités Paris VI et VII, 24 Rue Lhomond,

75231 Paris, France

Enrique Tirapegui
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile, Blanco Encalada 2008,

Santiago, Chile
!Received 12 June 2008; published 1 August 2008"

Sound emission produced by the interaction of several vortices in a two-dimensional homogeneous system
obeying the nonlinear Schrödinger !NLS" equation is considered. The radiation effect is explicitly computed in
terms of assumed vortex motion. The results are applied to a simple test case of two corotating vortices. The
prediction is compared to the result of numerical simulations of the NLS equation. The numerical data give
support to the estimate of radiation.

DOI: 10.1103/PhysRevE.78.026601 PACS number!s": 05.45.Yv, 67.25.dk, 47.32.C!

I. INTRODUCTION

Strong turbulent effective dissipation has been observed
to take place in inviscid and conservative systems, in the
context of !compressible" low-temperature superfluid turbu-
lence #1,2$. Vortices are thus subject to some significant dy-
namical dissipation mechanism. It has been suggested that
sound emission from the vortices is the major decay process
#3–5$. Detailed mechanisms are fully three dimensional
!3D". They involve initial vortex reconnection followed by
secondary excitation of long-wavelength helical waves,
known as Kelvin waves, along the vortex line and their sub-
sequent decay into sound waves #6$. It appears that evaluat-
ing these complicated 3D effects from first principles is a
formidable task at the present time.

The purpose of the present paper is to compute the sim-
pler analogous problem in two dimensions. We thus consider
sound emission produced by the interaction of several vorti-
ces in a 2D homogenous system obeying the nonlinear
Schrödinger !NLS" equation.

Our main result is that the far field, and thus the radiation
effect can be directly computed in terms of an assumed vor-
tex motion #see Eq. !17"$. These main formulas are then
applied to the simple test case of two corotating vortices,
reproducing theoretical estimates of the same test case #7,8$,
and the prediction is compared to the result of numerical
integrations of the NLS equation.

The paper is organized as follows. In Sec. II we establish
the basic proprieties of the NLS equation and recall the gen-
eral expression for the field produced by moving vortices.
Section III is devoted to the derivation of explicit trajectory-
dependent expressions for the radiative contribution to the
far field and the radiated energy flux. Section IV contains the
determination of vortex trajectories by numerical solutions of
the NLS and the comparison with theoretical predictions.
Discussion and conclusions are finally given in Sec. V.

II. NONLINEAR SCHRÖDINGER EQUATION

We consider the nonlinear Schrodinger equation !NLSE"
written with the physically relevant parameters: the coher-
ence length " and the sound velocity c,

i
!#

!t
=

c
%2"

!− "2$# − # + &#&2#" . !1"

This equation has Galilean invariance with the transforma-
tion #!x , t"→#!x−vt , t"ei!v·x−v2t/2" and it also has a Lagrang-
ian structure from which we can calculate an energy-
momentum tensor and the conserved quantities
corresponding to space-time translations #4$.

We can map the NLSE to hydrodynamics equations using
the Madelung transformation defined by

#!x,t" = %%!x,t" exp'i
&!x,t"
%2c"

( . !2"

Replacing Eq. !2" in the NLSE !1" and separating real and
imaginary parts we get

!%

!t
+ ! · !% ! &" = 0, !3"

!&

!t
+

1
2

!"&"2 = c2!1 − %" + c2"2$%%

%%
. !4"

We recognize here the continuity equation !3" for a fluid of
density % and velocity v=!& and the Bernoulli equation !4",
except for the last term which is usually called quantum
pressure since it has no analog in standard fluid mechanics !it
is proportional to '2 in the superfluidity context and it can be
neglected when the semiclassical limit is taken".

We note that, if the function # has a zero, the density % is
well defined but the phase & is undefined. The existence of a
zero requires the real and the imaginary parts of # to vanish
simultaneously and consequently these kind of singularities
generically appear as curves in 3D and points in 2D. These
topological defects have the property that their circulation is
a multiple of 4() !)=c" /%2", and for this reason they are
called quantum vortices in the context of superfluidity. In 2D
a stationary vortex solution centered at the origin can be
constructed in polar coordinates !% ,*" using the ansatz
%!r ,*"=%0!r"2 and &!r ,*"=2)m*, with m!Z the vortex

PHYSICAL REVIEW E 78, 026601 !2008"

1539-3755/2008/78!2"/026601!8" ©2008 The American Physical Society026601-1

   is a potential flowv = ∇ϕ

CHAPTER 2. MODELS OF SUPERFLUID TURBULENCE 2.1. The GP model

Figure 2.1: Dispersion relation of Bogoliubov waves obtained numerically by measuring the spatio-
temporal spectrum of weak amplitude waves driven by the GP model.

where k = |k| is its wave vector. Such kind of waves, are dispersive waves and they are solutions of the
Schrödinger equation. They are often called free particles.

Less trivial solutions are waves that propagate about a flat condensate  =
p
⇢0/meiµt, where ⇢0 is

the mean mass density and µ = g⇢0/m is the chemical potential. Linearising about this flat state, we
obtain the famous Bogoliubov dispersion relation

!Bogo
k

=

r
g⇢0
m2

+
~2

4m2
k4 = ck

r
1 +

1

2
⇠2k2, (2.14)

where we have defined the speed of sound c and the healing length ⇠ as

c =

r
g⇢0
m2

, ⇠ =

s
~2

2g⇢0
. (2.15)

The healing length ⇠ thus defines the scale at which dispersive e↵ects become important. Note that we
can rewrite the ratio ~/m =

p
2c⇠. As a matter of illustration, figure 2.1 displays the dispersion relation

of weak Bogoliubov waves obtained numerically from the GP model by performing a spatio-temporal
spectrum. The di↵erent asymptotic limits are clearly visible.

In many applications, in particular to compare di↵erent physical systems or experiment and numerics,
it is useful to rewrite the GP equation in terms of c, ⇠ and ⇢0/m:

i
@ 

@t
=

c

⇠
p

2

✓
�⇠2r2 +

m

⇢0
| |

2 �  

◆
, (2.16)

where we have include the chemical potential term µ , and expressed µ in terms of c and ⇠ (last term
inside the r.h.s).

2.1.3 Hydrodynamics: from a quantum vortex to Kolmogorov turbulence

The connection of the GP equation with hydrodynamics is given by the Madelung transformation defined
by

 (x, t) =

r
⇢(x, t)

m
exp [i

m

~ �(x, t)] =

r
⇢(x, t)

m
exp [i

�(x, t)
p

2c⇠
], (2.17)

7

Speed of sound
Coherence length

c =
p

g|A0|2/m
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Figure 2.2: Quantum vortex in the Gross-Pitaevskii model. Left: 3D visualisation of a straight quantum
vortex. The vortex is represented as a red isosurface of low values of the density field, whereas the
variation of the density field around the bulk value ⇢0 are rendered in blue. Streamlines of the velocity
field are displayed in green. Top right: Phase and velocity streamlines of a straight vortex solution in the
plane orthogonal to the filament. Bottom right: Vortex density and velocity profiles. Figure courtesy
of U. Giuriato taken from his Ph.D. manuscript [Giu20]

Expressing the (steady) GP equation in polar coordinates and looking for a solution of the type  (r, ✓) =
p
⇢0R(r) exp (in✓) yields an ordinary di↵erential equation for the vortex profile
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✓
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r2
� R2

◆
R = 0, (2.23)

where the boundary conditions are R(0) = 0 and R(1) = 1. This equation cannot be solved analytically.
The vortex profile is sketched in the bottom right panel of figure 2.2. The asymptotic behaviour of the
vortex profile is easily obtained from equation 2.23 and reads

lim
r!0

R(r) ⇡ c1(r/⇠)
|n|, lim

r!1
R(r) ⇡ 1 �

n2⇠

r2
(2.24)

where the pre-factor c1 may be determined numerically. For practical purposes, a Padé approximation
can be computed by imposing both asymptotic limits. A Padé approximation with n = 1 is

R(r) =

s
r̃2(a2 + a4r̃2 + a6r̃4)

1 + b2r̃2 + b4r̃4 + b6r̃6
, (2.25)

where r̃ = r/⇠. The coe�cients are a2 = 0.340038, a4 = 0.0360207, a6 = b6 = 0.000985125, b2 = 0.355931
and b4 = 0.037502. The vortex profile obtained numerically from equation (2.23), the Padé approximation
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where ⇢(x, t) is the density and �(x, t) is the potential velocity such that v = r�. Replacing the
transformation in (2.16) one directly obtains

@⇢

@t
+ r · ⇢v = 0 (2.18)
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1

2
(r�)2 =

c2

⇢0
(⇢0 � ⇢) + c2⇠2

r
2p⇢
p
⇢

(2.19)

Equations (2.18) and (2.19) are the continuity and Bernoulli equations respectively. Compared to classical
fluids, the Bernoulli equation contains an extra term that is called the quantum pressure. Such equations
are the ones governing the dynamics of isentropic, compressible and irrotational fluids. Note that in the
hydrodynamic variables, the Bogoliubov dispersion relation (2.1) is easily obtained by perturbing the
solution � = 0 and ⇢ = ⇢0.

Quantum vortices

Although the fluid is potential, it admits vortices as topological defects of the wave function. Indeed,
the Madelung transformation (2.17) is not defined if the wave function vanishes. If such is the case,
the phase can have a jump over a branch of discontinuity. As a zero of the wave function implies
two conditions (Re[ ] = Im[ ] = 0), quantum vortices are generically points in two dimensions and
filaments in three. Figure 2.2 displays a numerical solution of the GP model containing one straight
three-dimensional quantum vortex. Such a solution was first studied by Pitaevskii and Ginsburg [Pit61;
GP58], and it is the most fundamental hydrodynamical excitation of a quantum fluid.

A topological defect arises as a discontinuity of the phase of the wave function; as such, its associated
circulation might be not zero, even if the velocity fluid is potential. Indeed, we have that the velocity
circulation over a closed contour surrounding the defect is given by

� =

I

C
r� · d` = �+ � ��, (2.20)

where �+ and �� are the values of the phase in two sides of the branch of discontinuity, as displayed in
the top right panel of figure 2.2. Because the wave function needs to have a single value while crossing
this branch, it follows from the Madelung transformation (2.17) that �+ � �� = n2⇡~/m, with n 2 Z.
The circulation of a quantum vortex is thus quantised and takes the value

� = n
h

m
= n2⇡

p

2c⇠, with n 2 Z. (2.21)

The ratio h/m is called the Feynman-Onsager quantum of circulation [Fey55; Don91]. As a consequence
of the quantisation of circulation, the velocity vv and vorticity !v fields are

vv(x) =
�

2⇡r
✓̂, !v(x) = �k̂�(x), (2.22)

where we have used a system of coordinates as the one in figure 2.2. The velocity field is displayed in
green dashed lines in the bottom right panel.

So far, we have only discussed the phase of a quantum vortex. The precedent discussion is valid
for any topological defect described by a complex field, in particular for solutions of the Schrödinger
equation. What makes a GP quantum vortex very important is that due to its non-linearity, such a
solution is very stable and leads to a pressure term (see equation 2.19), so that quantum vortices behave
as real hydrodynamic vortices. Besides, dispersion regularises the solution and give an e↵ective core
size to the vortex. Indeed, the vortex profile can be straightforwardly obtained from the GP equation.

8

2.1. The GP model CHAPTER 2. MODELS OF SUPERFLUID TURBULENCE

where ⇢(x, t) is the density and �(x, t) is the potential velocity such that v = r�. Replacing the
transformation in (2.16) one directly obtains

@⇢

@t
+ r · ⇢v = 0 (2.18)

@�

@t
+

1

2
(r�)2 =

c2

⇢0
(⇢0 � ⇢) + c2⇠2

r
2p⇢
p
⇢

(2.19)

Equations (2.18) and (2.19) are the continuity and Bernoulli equations respectively. Compared to classical
fluids, the Bernoulli equation contains an extra term that is called the quantum pressure. Such equations
are the ones governing the dynamics of isentropic, compressible and irrotational fluids. Note that in the
hydrodynamic variables, the Bogoliubov dispersion relation (2.1) is easily obtained by perturbing the
solution � = 0 and ⇢ = ⇢0.

Quantum vortices

Although the fluid is potential, it admits vortices as topological defects of the wave function. Indeed,
the Madelung transformation (2.17) is not defined if the wave function vanishes. If such is the case,
the phase can have a jump over a branch of discontinuity. As a zero of the wave function implies
two conditions (Re[ ] = Im[ ] = 0), quantum vortices are generically points in two dimensions and
filaments in three. Figure 2.2 displays a numerical solution of the GP model containing one straight
three-dimensional quantum vortex. Such a solution was first studied by Pitaevskii and Ginsburg [Pit61;
GP58], and it is the most fundamental hydrodynamical excitation of a quantum fluid.

A topological defect arises as a discontinuity of the phase of the wave function; as such, its associated
circulation might be not zero, even if the velocity fluid is potential. Indeed, we have that the velocity
circulation over a closed contour surrounding the defect is given by
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where �+ and �� are the values of the phase in two sides of the branch of discontinuity, as displayed in
the top right panel of figure 2.2. Because the wave function needs to have a single value while crossing
this branch, it follows from the Madelung transformation (2.17) that �+ � �� = n2⇡~/m, with n 2 Z.
The circulation of a quantum vortex is thus quantised and takes the value
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The ratio h/m is called the Feynman-Onsager quantum of circulation [Fey55; Don91]. As a consequence
of the quantisation of circulation, the velocity vv and vorticity !v fields are

vv(x) =
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2⇡r
✓̂, !v(x) = �k̂�(x), (2.22)

where we have used a system of coordinates as the one in figure 2.2. The velocity field is displayed in
green dashed lines in the bottom right panel.

So far, we have only discussed the phase of a quantum vortex. The precedent discussion is valid
for any topological defect described by a complex field, in particular for solutions of the Schrödinger
equation. What makes a GP quantum vortex very important is that due to its non-linearity, such a
solution is very stable and leads to a pressure term (see equation 2.19), so that quantum vortices behave
as real hydrodynamic vortices. Besides, dispersion regularises the solution and give an e↵ective core
size to the vortex. Indeed, the vortex profile can be straightforwardly obtained from the GP equation.
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Figure 2.2: Quantum vortex in the Gross-Pitaevskii model. Left: 3D visualisation of a straight quantum
vortex. The vortex is represented as a red isosurface of low values of the density field, whereas the
variation of the density field around the bulk value ⇢0 are rendered in blue. Streamlines of the velocity
field are displayed in green. Top right: Phase and velocity streamlines of a straight vortex solution in the
plane orthogonal to the filament. Bottom right: Vortex density and velocity profiles. Figure courtesy
of U. Giuriato taken from his Ph.D. manuscript [Giu20]

Expressing the (steady) GP equation in polar coordinates and looking for a solution of the type  (r, ✓) =
p
⇢0R(r) exp (in✓) yields an ordinary di↵erential equation for the vortex profile

⇠2

r

d

dr

✓
r
dR

dr

◆
+

✓
1 �

n2⇠2

r2
� R2

◆
R = 0, (2.23)

where the boundary conditions are R(0) = 0 and R(1) = 1. This equation cannot be solved analytically.
The vortex profile is sketched in the bottom right panel of figure 2.2. The asymptotic behaviour of the
vortex profile is easily obtained from equation 2.23 and reads

lim
r!0

R(r) ⇡ c1(r/⇠)
|n|, lim

r!1
R(r) ⇡ 1 �

n2⇠

r2
(2.24)

where the pre-factor c1 may be determined numerically. For practical purposes, a Padé approximation
can be computed by imposing both asymptotic limits. A Padé approximation with n = 1 is

R(r) =

s
r̃2(a2 + a4r̃2 + a6r̃4)

1 + b2r̃2 + b4r̃4 + b6r̃6
, (2.25)

where r̃ = r/⇠. The coe�cients are a2 = 0.340038, a4 = 0.0360207, a6 = b6 = 0.000985125, b2 = 0.355931
and b4 = 0.037502. The vortex profile obtained numerically from equation (2.23), the Padé approximation
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where ⇢(x, t) is the density and �(x, t) is the potential velocity such that v = r�. Replacing the
transformation in (2.16) one directly obtains
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Equations (2.18) and (2.19) are the continuity and Bernoulli equations respectively. Compared to classical
fluids, the Bernoulli equation contains an extra term that is called the quantum pressure. Such equations
are the ones governing the dynamics of isentropic, compressible and irrotational fluids. Note that in the
hydrodynamic variables, the Bogoliubov dispersion relation (2.1) is easily obtained by perturbing the
solution � = 0 and ⇢ = ⇢0.

Quantum vortices

Although the fluid is potential, it admits vortices as topological defects of the wave function. Indeed,
the Madelung transformation (2.17) is not defined if the wave function vanishes. If such is the case,
the phase can have a jump over a branch of discontinuity. As a zero of the wave function implies
two conditions (Re[ ] = Im[ ] = 0), quantum vortices are generically points in two dimensions and
filaments in three. Figure 2.2 displays a numerical solution of the GP model containing one straight
three-dimensional quantum vortex. Such a solution was first studied by Pitaevskii and Ginsburg [Pit61;
GP58], and it is the most fundamental hydrodynamical excitation of a quantum fluid.

A topological defect arises as a discontinuity of the phase of the wave function; as such, its associated
circulation might be not zero, even if the velocity fluid is potential. Indeed, we have that the velocity
circulation over a closed contour surrounding the defect is given by

� =

I

C
r� · d` = �+ � ��, (2.20)

where �+ and �� are the values of the phase in two sides of the branch of discontinuity, as displayed in
the top right panel of figure 2.2. Because the wave function needs to have a single value while crossing
this branch, it follows from the Madelung transformation (2.17) that �+ � �� = n2⇡~/m, with n 2 Z.
The circulation of a quantum vortex is thus quantised and takes the value

� = n
h

m
= n2⇡

p

2c⇠, with n 2 Z. (2.21)

The ratio h/m is called the Feynman-Onsager quantum of circulation [Fey55; Don91]. As a consequence
of the quantisation of circulation, the velocity vv and vorticity !v fields are

vv(x) =
�

2⇡r
✓̂, !v(x) = �k̂�(x), (2.22)

where we have used a system of coordinates as the one in figure 2.2. The velocity field is displayed in
green dashed lines in the bottom right panel.

So far, we have only discussed the phase of a quantum vortex. The precedent discussion is valid
for any topological defect described by a complex field, in particular for solutions of the Schrödinger
equation. What makes a GP quantum vortex very important is that due to its non-linearity, such a
solution is very stable and leads to a pressure term (see equation 2.19), so that quantum vortices behave
as real hydrodynamic vortices. Besides, dispersion regularises the solution and give an e↵ective core
size to the vortex. Indeed, the vortex profile can be straightforwardly obtained from the GP equation.
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where ⇢(x, t) is the density and �(x, t) is the potential velocity such that v = r�. Replacing the
transformation in (2.16) one directly obtains

@⇢

@t
+ r · ⇢v = 0 (2.18)

@�

@t
+

1

2
(r�)2 =

c2

⇢0
(⇢0 � ⇢) + c2⇠2

r
2p⇢
p
⇢

(2.19)

Equations (2.18) and (2.19) are the continuity and Bernoulli equations respectively. Compared to classical
fluids, the Bernoulli equation contains an extra term that is called the quantum pressure. Such equations
are the ones governing the dynamics of isentropic, compressible and irrotational fluids. Note that in the
hydrodynamic variables, the Bogoliubov dispersion relation (2.1) is easily obtained by perturbing the
solution � = 0 and ⇢ = ⇢0.

Quantum vortices

Although the fluid is potential, it admits vortices as topological defects of the wave function. Indeed,
the Madelung transformation (2.17) is not defined if the wave function vanishes. If such is the case,
the phase can have a jump over a branch of discontinuity. As a zero of the wave function implies
two conditions (Re[ ] = Im[ ] = 0), quantum vortices are generically points in two dimensions and
filaments in three. Figure 2.2 displays a numerical solution of the GP model containing one straight
three-dimensional quantum vortex. Such a solution was first studied by Pitaevskii and Ginsburg [Pit61;
GP58], and it is the most fundamental hydrodynamical excitation of a quantum fluid.

A topological defect arises as a discontinuity of the phase of the wave function; as such, its associated
circulation might be not zero, even if the velocity fluid is potential. Indeed, we have that the velocity
circulation over a closed contour surrounding the defect is given by

� =

I

C
r� · d` = �+ � ��, (2.20)

where �+ and �� are the values of the phase in two sides of the branch of discontinuity, as displayed in
the top right panel of figure 2.2. Because the wave function needs to have a single value while crossing
this branch, it follows from the Madelung transformation (2.17) that �+ � �� = n2⇡~/m, with n 2 Z.
The circulation of a quantum vortex is thus quantised and takes the value

� = n
h

m
= n2⇡

p

2c⇠, with n 2 Z. (2.21)

The ratio h/m is called the Feynman-Onsager quantum of circulation [Fey55; Don91]. As a consequence
of the quantisation of circulation, the velocity vv and vorticity !v fields are

vv(x) =
�

2⇡r
✓̂, !v(x) = �k̂�(x), (2.22)

where we have used a system of coordinates as the one in figure 2.2. The velocity field is displayed in
green dashed lines in the bottom right panel.

So far, we have only discussed the phase of a quantum vortex. The precedent discussion is valid
for any topological defect described by a complex field, in particular for solutions of the Schrödinger
equation. What makes a GP quantum vortex very important is that due to its non-linearity, such a
solution is very stable and leads to a pressure term (see equation 2.19), so that quantum vortices behave
as real hydrodynamic vortices. Besides, dispersion regularises the solution and give an e↵ective core
size to the vortex. Indeed, the vortex profile can be straightforwardly obtained from the GP equation.
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FIG. 1. (a)-(c) Sequences of 20 images of the density distri-
bution of the atoms extracted from three BECs; frames are
taken every �t = 84 ms, each after a 13 ms expansion. (a)
Static vortex. (b)-(c) Vortices precessing with di↵erent am-
plitudes. Each vortex is randomly oriented in the xy plane
and, after expansion, it forms a planar density depletion [23]
which is visible as a stripe. (d)-(i) Sequences with two and
three vortices, with �t = 28 ms; here frames are not to scale
and vertically squeezed to enhance visibility. (j)-(m) Destruc-
tive absorption images of the whole BEC taken along the ax-
ial direction z after 120 ms of expansion, showing (j) a single
vortex filament crossing the condensate from side to side and
(k)-(m) two vortices with di↵erent relative orientation and
shape. All images show the residuals after subtracting the
fitting TF profile.

tion sequence the remaining condensate evolves in trap,
only weakly a↵ected by atom number change, provided
�N/N(t) is su�ciently small. We can then identify the
axial position of the vortex in each image of the outcou-
pled atoms and analyze its oscillation as a faithful rep-
resentation of the in-trap dynamics. Typical examples
are shown in Figs. 1(a)-1(i) . Alternatively we image the
full BEC along the axial direction after a long expan-
sion with a destructive technique as in [22] and directly
see the shape and orientation of the vortex lines as in
Figs. 1(j)-1(m).

We first choose an evaporation rate of 525 kHz/s, yield-
ing one vortex in each BEC on average. From the se-

quence of radial images we extract the axial position of
each vortex z(t). Frames are recorded every �t = 84 ms.
Figures 2(a) and 2(b) show two examples corresponding
to the raw images of Figs. 1(b) and 1(c), respectively.
The observations are consistent with a vortex precession
around the trap center, as the one observed in oblate
BECs [16, 33]. In a nonrotating elongated condensate,
a straight vortex line, oriented in a radial plane, is ex-
pected to follow an elliptic orbit in a plane orthogonal to
the vortex line, corresponding to a trajectory at constant
density [34]. The observed motion of each dark stripe in
Figs. 1(a)-1(c) is the axial projection of such a precession.
Given ro = zmax/Rz = ymax/R? the in-trap amplitude of
the orbit normalized to the TF radii R? =

p
2µ/(m!2

?)

and Rz =
p

2µ/(m!2
z) [32], the precession period is pre-

dicted to be

T =
4(1� r2o)µ

3~!? ln(R?/⇠)
Tz , (1)

where Tz = 2⇡/!z is the axial trapping period and ⇠ is
related to the chemical potential µ by ⇠ =

p
~2/(2mµ).

This result, which is valid to logarithmic accuracy, has
been derived for a disk-shaped nonaxisymmetric conden-
sate in Refs. [35, 36] within the Gross-Pitaevskii theory
at T = 0 and in the TF approximation, corresponding to
R?/⇠ � 1 (in our case, R?/⇠ ranges from 60 to 20). It
can also be obtained by means of the superfluid hydro-
dynamic approach introduced in Ref. [37] to describe the
motion of vortex rings in elongated condensates, appro-
priately generalized to the case of solitonic vortices as in
Ref. [24]. The quantity µ(1 � r2o) is the local chemical
potential along the vortex trajectory and we assume ro to
be constant during expansion, as distances are expected
to scale in the same way in the slow axial expansion.
In comparing the observed period with Eq. (1) we must

consider that the number of atoms is decreasing from shot
to shot. Since extraction is spatially homogeneous, the
gradients of the density, and hence the equipotential lines
for the vortex precession and the orbit amplitude remain
almost unchanged. However, N(t) (hence µ / N2/5)
decreases in time and so does the vortex orbital period
T , as is clearly visible in Figs. 2(a) and 2(b). We de-
fine an instantaneous period at time t as the period ob-
tained from a sinusoidal fit to the measured position in a
time interval centered at t and containing about one os-
cillation. Such T (t) is plotted in Fig. 2(c) and 2(d) and
compared to Eq. (1), where we include the e↵ect of the
observed t dependence on N , shown in Fig. 2(e), both in
µ and ⇠. The agreement is good, the major limitation
being the experimental uncertainty in N . We also show
the period expected for the oscillation of a dark or grey
soliton, which is

p
2 Tz independently of N [38, 39]. In

Fig. 2(f) we plot the period of vortices orbiting with dif-
ferent amplitude ro. The agreement with theory is again
good and can be further appreciated by considering the
ratio between each value of T measured at a given ro and
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Perpendicular Antiparallel Trefoil knot Tangle

FIG. 1. Three-dimensional plot showing the reconnection events explored numerically. The initial
configuration is displayed for (a1) the perpendicular vortex lines, (b1) the antiparallel lines, and (c1) the
trefoil knot. (a2)–(c2) show a corresponding zoom at the moment of reconnection. Also shown are (d1) the
turbulent tangle and (d2) a zoom in of where a reconnection takes place. Red and blue correspond to the
reconnecting vortex filaments; the light blue isosurfaces render the density field at low values.

III. APPROACH AND SEPARATION RATES139

Apart from the characteristic length scale ξ inherently present in the GP model, when quantized140

vortices are considered, the quantum of circulation " can be used to formulate an extra length scale.141

Hence, by dimensional analysis, the distance between two reconnecting lines is expected to be142

δ±(t) = A±ξ 1−2α± |"(t − tr )|α±
, (4)

where α± and A± are dimensionless parameters and the superscript ± stands for before (−) and after143

(+) the reconnection event. The temporal evolution of the minimal distances between reconnecting144

filaments for the different case studies is displayed in Figs. 2(a)–2(d). An explanatory movie of145

the knot reconnection is also provided as Supplemental Material [34]. Remarkably, in all cases2 146

the approach and separation rates follow the same dimensional t1/2 scaling. For each event we147

estimate the reconnection time tr by doing a linear fit on δ±(t)2 and compute tr as the arithmetic148

mean between t±r that satisfies δ±(t±r )2 = 0. The t1/2 scaling extends beyond ξ and only slight149

deviations are observed in some cases. Perhaps this fact could explain the different results for150

the scaling obtained in Refs. [16–18], where it was concluded that the exponents before and after151

the reconnection are different. For instance, in Ref. [16] it was found that α− ∈ (0.3,0.44) and152

α+ ∈ (0.6,0.73) and in Ref. [18] that either α± = 1/2 or α− = 1/3 and α+ = 2/3, depending on153

the initial vortex filament configuration. In these works the time asymmetry was interpreted as a154

manifestation of the irreversible dynamics due to sound emission; we will return to this interesting155

point in Sec. VI. Let us stress that the tracking algorithm we used is able to measure the intervortex156

distances even in the presence of sound waves (the Taylor-Green tangle analyzed contains moderate157

sound at all scales) and no asymmetry concerning the exponent is observed.158

Although the measured exponent is always α± = 1/2, the full dynamics is not symmetrical with159

respect to the reconnection time as it can be immediately deduced by observing Fig. 2. By estimating160

the prefactors A± with a fit, shown in Fig. 3(a), we conclude that these are always order of the unity161

but are not universal. Moreover, we observe that the vortex filaments usually separate faster than162

they approach (A− ! A+).163
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Kelvin waves

3.1. DERIVATION OF THE KELVIN WAVE DISPERSION RELATIONCHAPTER 3. KELVIN WAVES

cascade, later in this chapter. At the beginning of this chapter, we will focus on the description of linear
Kelvin waves.

Before we proceed, one remark is in order to avoid confusions. In the geophysics or atmospheric
communities is often talked about Kelvin waves or modes. Such waves are not at all related with the one
discussed in this chapter. Kelvin modes in that context arise as balance between Coriolis force and some
king of waveguide. In particular, unlike Kelvin (vortex filament) waves, they are not dispersive.

3.1 Derivation of the Kelvin wave dispersion relation

In this section we reproduce the original work of Kelvin [Tho80], using a modern notation. We shall
then express the velocity field by using cylindrical coordinates v(r, ✓, z) = vrr̂ + v✓✓̂ + vz ẑ. We consider
a perfect incompressible fluid of constant density ⇢0 satisfying the Euler equations:
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@z
= 0. (3.5)

We look for a steady solution containing a straight vortex aligned with the z-axis. Such a vortex can be
simply defined as

v(r, ✓, z) =
↵(r)

r
✓̂, and p(r, ✓, z) = p0(r) = ⇢0

Z r

a0

↵(s)2

s3
ds. (3.6)

The profile of the vortex core is implicitly defined by ↵(r) and we denote by a0 it core size. Note that
�[r] = 2⇡↵(r) is the circulation around the vortex.

A Kelvin wave is a perturbation of the previous solution that can be written as

ur(r, ✓, z, t) = ✏vr(r) cos kz sin(!t � n✓) (3.7)

u✓(r, ✓, z, t) =
↵(r)

r
+ ✏v✓(r) cos kz cos(!t � n✓) (3.8)

uz(r, ✓, z, t) = ✏vz(r) sin kz sin(!t � n✓) (3.9)

p(r, ✓, z, t) = p0(r) + ✏⇢0 p1(r) cos kz cos(!t � n✓), (3.10)

where ✏ is assumed to be small. Linearizing for ✏ ⌧ 1 leads to the following equation for the perturbations

vr(r) + nv✓(r) = �rkvz � rv0r(r) (3.11)

The velocity fields vr, v✓ and the pressure p1(r) can be expressed as a function of vz:

p1(r) = uz(r)
!

k

⇣
1 �

n↵

!r2

⌘
(3.12)
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�
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!r2

�
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h
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i
(3.13)

v✓(r) =
1

⇤(r)k
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1 �
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⌘ ↵0

!r
v0z +

✓
⇤(r) +

↵02

!2r2

◆
n

r
vz

�
, (3.14)

where ⇤(r) =
⇣
1 �

n↵(r)
!r2

⌘2
�

1
!2r3 2↵↵0. Replacing (3.13-3.14) in (3.11) leads to a linear equation for vz

only.
We will consider now two particular cases of the vortex profile.
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Take the incompressible Euler’s equations

� =

I

C
v · d` = 2⇡↵(r)

<latexit sha1_base64="T7hK5QsS9xs+UE4tBguSNo5/zMQ=">AAACRnicbVDLahRBFL098RHH16hLN4WDEDdD9yjoJhAMRJcRnCSQGobb1dWZIvVoqm4Hhqb/yA9x7S7EH3CTXXBr9cwsdOKBgsM593LrnLzSKlCaXia9rTt3793fftB/+Ojxk6eDZ8+Pgqu9kBPhtPMnOQaplZUTUqTlSeUlmlzL4/x8v/OPL6QPytmvtKjk1OCZVaUSSFGaDQ74JzQGd7lTlmYNN0hzgbrZb9uG5yW7aLkoHLGGe8OKlcal1u3umFeKo67muOPfzAbDdJQuwW6TbE2GsMbhbPCLF07URloSGkM4zdKKpg16UkLLts/rICsU53gmTyO1aGSYNsu8LXsdlYKVzsdniS3VvzcaNCEsTB4nuzxh0+vE/3qdQs7psPEBKj9MG2WrmqQVq/tlrRk51nXKCuWlIL2IBIVXMQITc/QoKDbfj91km03cJkfjUfZ2NP7ybrj3cd3SNryEV7ADGbyHPfgMhzABAd/gB1zBz+R7cp3cJL9Xo71kvfMC/kEP/gBzFrLP</latexit>

v0(r, ✓, z) =
↵(r)

r
✓̂

<latexit sha1_base64="aW1Zu4XHQPTJBl9KeI1OgkLktlo=">AAACNXicbVDLSsNAFJ34tr6qLt0MFqGClKQquhGKblxWsCqYUm6mEzM4yYSZG6GGfIkf4tqtfoELdyK48hecPhZaPTBwOOdc7twTpFIYdN1XZ2Jyanpmdm6+tLC4tLxSXl27MCrTjLeYkkpfBWC4FAlvoUDJr1LNIQ4kvwxuT/r+5R3XRqjkHHspb8dwk4hQMEArdcr7uR+E9K7ouFW942PEEXbut4/8UAPLfZBpBFW9XeS68CPAfJgoOuWKW3MHoH+JNyIVMkKzU/70u4plMU+QSTDm2nNTbOegUTDJi5KfGZ4Cu4Ubfm1pAjE37XxwXkG3rNKlodL2JUgH6s+JHGJjenFgkzFgZMa9vviv11dQKWnGPoDhYTsXSZohT9hwf5hJior2K6RdoTlD2bMEmBb2BMoisIWhLbpku/HGm/hLLuo1b7dWP9urNI5HLc2RDbJJqsQjB6RBTkmTtAgjD+SJPJMX59F5c96dj2F0whnNrJNfcL6+AdAirKQ=</latexit>

Kelvin Waves : v = v0+δv+…
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Figure 3.1: Wave excitations of a vortex filament in an incompressible fluid. a) A vortex with a solid
rotating core (Eq.(3.26). b) The hollow core vortex dispersion relation (3.26). c) A zoom of b). The
asymptotic predictions for n = 1 are displayed in dashed lines. We use the convention that � < 0, so
KWs lay on the upper plane.

of the order of the healing length. Kelvin waves in the context of superfluids were first studied by
L.P. Pitaevskii by using the mean-field equation today known as the Gross-Piteavskii (GP) equation
[pitaevskiilevpVortexLinesImperfect1961].

Vortex waves in GP were later studied in much details by P.H. Roberts [Rob03b]. As L.P Pitaevskii,
in his work, P.H. Roberts perturbs a straight quantum vortex in order to determine the vortex excitations
of a quantum vortex. He was able to find analytically the Kelvin dispersion in the limit k ! 0. As in the
case of an incompressible fluid, it can be expressed as

!(k) = �
�

8⇡
k2

✓
log

1

⇠|k|
+ b

◆
, with b = log 2 � �E + CR (3.29)

CR = lim
L!1

Z L

0

(✓
dR

dr

◆2

+

✓
R

r

◆2
)

rdr � log L = �0.119118 . . . (3.30)

where ⇠ is the coherence length and R(r) is the density profile of a quantum vortex (see Section ?? [Add

ref]). The constant CR was evaluated numerically in his work.
Like in the case of compressible fluids [Rob03a], probably inspired by quantum mechanics, Roberts

used the concept of bound and free (Kelvin wave) states. In his notation, the perturbation of the straight
vortex has a dependence given by e�i!t±µr, where ! and µ are in general complex numbers and r the
radial distance to the straight vortex. For a bound state the amplitude of the perturbation decreases with
r. In this case, the vortex wave travels along the vortex axis without loss of energy. On the contrary, for
a free state, there are waves escaping to infinity. Such density waves are waves radiated by the vortices.
Roberts found that in general vortex excitations are free for all k, except for the cases n = 1 and n = 2
that are a bit special.

The case n = 1 is the most interesting one. It was found that this mode is bound for all k, with !
always being a real number. As a consequence, the n = 1 mode does not radiate energy. The numerical
solution found by Roberts is displayed in figure 3.2.b. The case n = 2 was found to be bound only for
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3.2.b. Roberts did not find any indication that a vortex solution could be unstable for any mode or
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Finally, also mentioned by Roberts, in the large k limit, the vortex wave dispersion relation tends
to the free particle one ��k2/4⇡. In reference [GKN19], we introduced a fit based on the two known
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respectively. At the leading order, they are given by
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Notting that r2�a20 ⇡ 2a0(r�a0) close to the cylinder, using (3.21) and (3.23) the condition p(rp, ✓p, z, t) =
0 implies
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or simply,
uz(a0)(!̃ � n)2 � ka0ur(a0) = 0, (3.25)

where !̃ was defined above in the previous case. By noting from Eq.(3.13) that ur(r) = �u0
z(r)/k and

replacing (3.20), we obtain an equation defining the dispersion relation. Solving for ! gives the hollow
vortex Kelvin wave dispersion relation 1
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�

2⇡a20
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n +
a0|k|Kn�1(a0|k|)

Kn(a0|k|)
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(3.26)

The dispersion relation (3.26) is much simpler than the one of the previous section and it is often found
in the literature. For n = 1, in the limit of small wave numbers it reduces to

!�(k) = �
�

8⇡
k2

✓
log

1

a0|k|
+ b

◆
, with b = log 2 � �E (3.27)

!+(k) =
�

8⇡a20
. (3.28)

We observe that only di↵erence between (3.19) and (3.27) is the core constant b. We also note that
the positive branch takes values much larger than the negative one for k ! 0. As we will see later, this
frequency is related to the Magnus force and the mass inside the core.

The previous results were derived by Kelvin in [Tho80] in 1880. Much later, in 2003 P. H. Roberts
generalised Kelvin result to the case of a compressible fluid [Rob03a].

3.1.3 Discussion on vortex wave excitations

We start this discussion by plotting the dispersion relation of vortex excitation for both core models. The
dispersion relations are displayed in Figure 3.1. We clearly note form the figure that there are several
branches of vortex excitations. The waves having n = 0 are known as varicose waves as they do not have
any angular dependence [Check that]. Most interesting, it is the branch with n = 1, in particular the
branch having values of opposite sign respect to �. The literature usually refers as Kelvin wave to this
particular branch.

3.2 Vortex excitations in the Gross-Pitaevskii model

Vortices in superfluids are in some sense ideal vortices, their are topological defects and their circula-
tion around them is quantised. They are actually nodal lines of the complex order parameter describ-
ing the system. In Bose-Einstein condensates, their core has a finite and well determined size that is

1We have use the identity nKn(z) +Kn�1(z) = �zK0
n(z).
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δv(θ, z) ∼ cos(kz)sin(nθ − ωt)



DRAFT

Actually, for |nv| > 1 vortices are structurally unstable and
split into single-charged vortices. We shall consider only nv =
±1 vortices.

Frequency spectrum of superfluid vortex excitations. Excita-
tions are present in quantum vortices because of thermal,
quantum or turbulent fluctuations. They are waves propagat-
ing along the vortex line with a certain frequency �v(k), where
k is the (one dimensional) wave number of the excitation. At
scales larger than the vortex core size (k› π 1), such excita-
tions are known as Kelvin waves (KWs) and they play the
important role of carrying energy towards the smallest scales
of a superfluid [22]. At such scales, the dynamics of a vortex
line can be described by the vortex filament model, accord-
ing to which the motion of the filament is determined by the
self-induced velocity vs.i. of the line on itself [5]. This model
involves non-local contributions and a singular integral that
needs to be regularized [23]. The simplest approximation that
can done is the well known Local Induction Approximation
(LIA), where only the contribution to vs.i. due to the local
curvature at each point of the filament is considered. The LIA
model reads [24]

ṡ(’, t) = vs.i.(’, t), vs.i.(’, t) = �
4fi

� ˆs
ˆ’

◊ ˆ2s
ˆ’2

, [6]

where s(’, t) is the curve that parametrizes the filament, ’
is the arc-length and the parameter � > 0 is considered as
a constant. In the case of small displacements of a straight
filament oriented along the z-axis, the vortex line can be
parametrized as s(z, t) = sx(z, t) + isy(z, t). At the leading
order Eq. (6) reduces to

ṡ(z, t) = vs.i.(z, t), vs.i.(z, t) = i
�
4fi

� ˆ2

ˆz2
s(z, t). [7]

The LIA equation (7) admits solutions in the form of helicoidal
waves propagating along the vortex line with a dispersion
relation

�LIA(k) = ≠��
4fi

k2. [8]

A better description of vortex waves was formally derived from
the Euler equations for an ideal incompressible fluid by Sir
W. Thomson (Lord Kelvin) [25] in the case of a hollow vortex,
namely if the vorticity is concentrated in a thin tube of radius
a0. In this case the frequency of propagation is given by the
well known Kelvin wave dispersion relation

�KW(k) = �
2fia2

0

5
1 ≠

Ú
1 + a0|k|K0(a0|k|)

K1(a0|k|)

6
[9]

where Kn(x) is the modified Bessel function of order n and a0

depends on the model of the vortex core. It has been shown by
Roberts [26] that the small wave number limit of expression
(9) is valid also for large-scale waves propagating along the
superfluid vortex described by the GP equation:

�v(k) ≠æ
k›π1

�KW(ka0 æ 0) = ≠ �
4fi

k2

3
ln 2

a0|k| ≠ “E

4
, [10]

where a0 = 1.1265› and “E ≥ 0.5772 is the Euler-Mascheroni
constant. On the other hand, at small scales the excitations

of a quantum vortex behave as (GP) free particles and the
dispersion relation is simply given by [26]

�v(k) ≠æ
k›∫1

�≠
B(k› æ Œ) = ≠ �

4fi
k2, [11]

Note that all the frequencies (7-11) have an opposite sign with
respect to the circulation �, namely KWs rotate opposite to the
vortex flow vv. In the numerics presented in this work, we use
a fit of the dispersion relation that matches both asymptotic
(9) and (11). It reads

�fit

v (k) = �KW(k)
1
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,

[12]
with ‘ 1

2
= ≠0.22 and ‘1 = 0.64 (see Methods for details).

Results

Motion of particles trapped by quantum vortex. We are inter-
ested in the behavior of particles captured by quantum vortices.
Since hydrogen and deuterium particles used to visualize vor-
tices in superfluid helium experiments are considerably larger
than the vortex core (typically ap ≥ 104›) they could be cap-
tured not by an isolated vortex but by bundles of many single
polarized vortices. In such complex system, the large particle
size and inertia might a�ect the vortex dynamics. It is then
natural to try to understand how the dynamics of vortices is
modified by the presence of the particles, or in other terms,
how well particles track superfluid vortices.

An amazing experimental evidence is that trapped parti-
cles distribute themselves at an almost equal spacing (see for
instance Ref. [7]). In this work we do not address the physical
origins of this distribution, but we adopt it as a hypothesis for
setting the initial condition of our simulations.

We start our discussion by presenting the settings of the
GP-P model in our simulations. The GP-P equations are
integrated in a 3D periodic domain of dimensions L‹◊L‹◊LÎ.
The initial conditions consist in a perturbed straight vortex
containing small amplitude vortex excitations. The vortex is
loaded with a number of particles and then evolved under GP-
P dynamics. The computational domain contains three other
image vortices in order to preserve periodicity. Only one vortex
contains particles whereas the three other are bare. We have
used resolutions up to 256 ◊ 256 ◊ 1024 and 5123 collocation
points. We express the particle mass as Mp = MM0, where
M0 is the mass of the displaced superfluid. Therefore, light,
neutral and heavy particles have M < 1, M = 1 and M > 1
respectively. Lengths are expressed in units of ›, times in units
of · = ›/c and velocities in units of c. Further details on the
numerical implementation are given in Methods.

Figure 1 displays the four di�erent configurations studied
in this work. Figure 1.a shows one particle moving in a
quantum vortex which clearly induces KWs on the filament.
Figure 1.b displays an array of particles initially set at equal
distances. We have checked that provided that particles are
distant enough, they remain equally distributed along the
vortex, with very small fluctuations along its axis. Figure 1.c
displays a snapshot in the case where particles strongly overlap
creating an almost continuous distribution of mass inside the
vortex. Producing this state is possible by properly adjusting
the repulsive potential V ij

rep in Eq. (2). The purpose of studying
this configuration is two-fold. First, from the theoretical point
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ṡ(’, t) = vs.i.(’, t), vs.i.(’, t) = �
4fi

� ˆs
ˆ’

◊ ˆ2s
ˆ’2

, [6]

where s(’, t) is the curve that parametrizes the filament, ’
is the arc-length and the parameter � > 0 is considered as
a constant. In the case of small displacements of a straight
filament oriented along the z-axis, the vortex line can be
parametrized as s(z, t) = sx(z, t) + isy(z, t). At the leading
order Eq. (6) reduces to
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dynamics

The aim
of this secti

on is to provide an introduction
to the dynamics of vorte

x waves,
including a short

descri
ption

on the wave
turbulence Kelvin wave

casca
de. We start

by descri
bing the basic

non-linear

models of vorte
x dynamics.

3.3.1
Local Induced

Approximatio
n

The so-ca
lled

Local Induced Approximation
(LIA) is perhaps the simplest descri

ption
of the dynamics of

a vorte
x line. As its names sugges

t, it is based
on a local approximation

that was introduced by Da Rios

in 1906
[Da 06].

Let us start
by recal

ling that the tran
slati

onal velocity
of a vorte

x ring of radius R and circu
latio

n �

is simply [Don91]
vring

=
�

2⇡R
(log(

R/a0) � d),

(3.34
)

where d is some core
dependent constant. We param

etris
e the vorte

x line as s(⇣),
where ⇣ is the natural

param
etris

ation
.

b(⇣, t)
=

s� ⇥ s�
�

|s� ⇥ s�� |
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Figure 3.3:
Sketch

of the local induced

approximation
model LIA. The vorte

x is

displayed
in red. The blue arrow

s indicate

orien
tatio

n of the velocity
of the flow. The

red and brown arrow
denote the vorti

city

of the filament and the the vorte
x ring re-

spectiv
ely.

Figure courtesy
of U. Giuriato

,

adapted from
his Ph.D. thesis

[Giu20].

The LIA model assu
mes that each

point of the vorte
x line

moves
with the velocity

of a vorte
x ring tangent to that point

(resp
ectin

g its vorti
city

orien
tatio

n) and of radius equal to
the

radius of curvatu
re of that point. This is clear

ly sketc
hed in

figure 3.3.
The unit binormal vecto

r bb indicate
s the direct

ion

in which a vorte
x point will move.

Note that it is in the

opposite
direct

ion respect to the flow arou
nd the vorte

x. The

LIA model, is then simply given
by

ṡ =
�⇤

4⇡R
bb =

�⇤

4⇡
s0 ⇥ s0

0 ,

(3.35
)

where the dot and primes denote deriva
tives

respect to time

and ⇣ respectiv
ely.

The pre-fa
ctor

is ⇤ = log R0/a0 where R0

is the charac
teris

tic or mean
radius, that is usually

assu
med

to be constant. Note that the LIA model conserve
s the total

vorte
x length L =

Z ����
@s

@⇣

����d⇣.

(3.36
)

In the case
of an almost strai

ght vorte
x align

ed alon
g the z

axis, the filament can be param
etris

ed using carte
sian

coordi-

nates
s = (X(z), Y

(z), z
). Denoting by s(z)

= X(z) + iY (z),

and assu
ming small d

eform
ation

s (|s
0 | ⌧

1), the LIA equation

becom
es

i�ṡ =
�HLIA

�s
⇤

= �

�2⇤

4⇡

@2 s

@z2
, with

HLIA
=

�2⇤

4⇡

Z
|
@s

@z
|
2 dz.
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)

The Hamilton
ian structure of the LIA model is apparen

t. Its

Hamilton
ian is actu

ally
an energy

per unit of density.
The

energy
of Kelvin waves

is given
by EKW

= ⇢0HLIA
. The term

⇢0�
2⇤/4⇡

is calle
d the vorte

x line tension

as it relat
es the energy

and the total
length of the vorte

x.

Note that the LIA model trivially
leads to the LIA Kelvin wave dispersio

n relat
ion

!LIA
(k) = �

�⇤

4⇡
k
2 ,

(3.38
)

that misses
the logar

ithmic corre
ction

in the dispersio
n relat

ions discussed
in the previous secti

ons.
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Local Induced Approximation (LIA) Da Rios, Rendiconti del Circolo Matematico 
di Palermo (1906).
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3.3 Non-linear Kelvin wave dynamics

The aim of this section is to provide an introduction to the dynamics of vortex waves, including a short
description on the wave turbulence Kelvin wave cascade. We start by describing the basic non-linear
models of vortex dynamics.

3.3.1 Local Induced Approximation

The so-called Local Induced Approximation (LIA) is perhaps the simplest description of the dynamics of
a vortex line. As its names suggest, it is based on a local approximation that was introduced by Da Rios
in 1906 [Da 06].

Let us start by recalling that the translational velocity of a vortex ring of radius R and circulation �
is simply [Don91]

vring =
�

2⇡R
(log(R/a0) � d), (3.34)

where d is some core dependent constant. We parametrise the vortex line as s(⇣), where ⇣ is the natural
parametrisation.

b(⇣, t) =
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Figure 3.3: Sketch of the local induced
approximation model LIA. The vortex is
displayed in red. The blue arrows indicate
orientation of the velocity of the flow. The
red and brown arrow denote the vorticity
of the filament and the the vortex ring re-
spectively. Figure courtesy of U. Giuriato,
adapted from his Ph.D. thesis [Giu20].

The LIA model assumes that each point of the vortex line
moves with the velocity of a vortex ring tangent to that point
(respecting its vorticity orientation) and of radius equal to the
radius of curvature of that point. This is clearly sketched in
figure 3.3. The unit binormal vector bb indicates the direction
in which a vortex point will move. Note that it is in the
opposite direction respect to the flow around the vortex. The
LIA model, is then simply given by

ṡ =
�⇤

4⇡R
bb =

�⇤

4⇡
s0 ⇥ s00, (3.35)

where the dot and primes denote derivatives respect to time
and ⇣ respectively. The pre-factor is ⇤ = log R0/a0 where R0

is the characteristic or mean radius, that is usually assumed
to be constant. Note that the LIA model conserves the total
vortex length

L =

Z ����
@s

@⇣

���� d⇣. (3.36)

In the case of an almost straight vortex aligned along the z
axis, the filament can be parametrised using cartesian coordi-
nates s = (X(z), Y (z), z). Denoting by s(z) = X(z) + iY (z),
and assuming small deformations (|s0| ⌧ 1), the LIA equation
becomes

i�ṡ =
�HLIA

�s⇤
= �

�2⇤

4⇡

@2s

@z2
, with HLIA =

�2⇤

4⇡

Z
|
@s

@z
|
2dz.

(3.37)
The Hamiltonian structure of the LIA model is apparent. Its
Hamiltonian is actually an energy per unit of density. The

energy of Kelvin waves is given by EKW = ⇢0HLIA. The term ⇢0�2⇤/4⇡ is called the vortex line tension
as it relates the energy and the total length of the vortex.

Note that the LIA model trivially leads to the LIA Kelvin wave dispersion relation

!LIA(k) = �
�⇤

4⇡
k2, (3.38)

that misses the logarithmic correction in the dispersion relations discussed in the previous sections.
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3.3 Non-linear Kelvin wave dynamics

The aim of this section is to provide an introduction to the dynamics of vortex waves, including a short
description on the wave turbulence Kelvin wave cascade. We start by describing the basic non-linear
models of vortex dynamics.

3.3.1 Local Induced Approximation

The so-called Local Induced Approximation (LIA) is perhaps the simplest description of the dynamics of
a vortex line. As its names suggest, it is based on a local approximation that was introduced by Da Rios
in 1906 [Da 06].

Let us start by recalling that the translational velocity of a vortex ring of radius R and circulation �
is simply [Don91]

vring =
�

2⇡R
(log(R/a0) � d), (3.34)

where d is some core dependent constant. We parametrise the vortex line as s(⇣), where ⇣ is the natural
parametrisation.
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Figure 3.3: Sketch of the local induced
approximation model LIA. The vortex is
displayed in red. The blue arrows indicate
orientation of the velocity of the flow. The
red and brown arrow denote the vorticity
of the filament and the the vortex ring re-
spectively. Figure courtesy of U. Giuriato,
adapted from his Ph.D. thesis [Giu20].

The LIA model assumes that each point of the vortex line
moves with the velocity of a vortex ring tangent to that point
(respecting its vorticity orientation) and of radius equal to the
radius of curvature of that point. This is clearly sketched in
figure 3.3. The unit binormal vector bb indicates the direction
in which a vortex point will move. Note that it is in the
opposite direction respect to the flow around the vortex. The
LIA model, is then simply given by

ṡ =
�⇤

4⇡R
bb =

�⇤

4⇡
s0 ⇥ s00, (3.35)

where the dot and primes denote derivatives respect to time
and ⇣ respectively. The pre-factor is ⇤ = log R0/a0 where R0

is the characteristic or mean radius, that is usually assumed
to be constant. Note that the LIA model conserves the total
vortex length

L =

Z ����
@s

@⇣

���� d⇣. (3.36)

In the case of an almost straight vortex aligned along the z
axis, the filament can be parametrised using cartesian coordi-
nates s = (X(z), Y (z), z). Denoting by s(z) = X(z) + iY (z),
and assuming small deformations (|s0| ⌧ 1), the LIA equation
becomes

i�ṡ =
�HLIA

�s⇤
= �

�2⇤

4⇡

@2s

@z2
, with HLIA =

�2⇤

4⇡

Z
|
@s

@z
|
2dz.

(3.37)
The Hamiltonian structure of the LIA model is apparent. Its
Hamiltonian is actually an energy per unit of density. The

energy of Kelvin waves is given by EKW = ⇢0HLIA. The term ⇢0�2⇤/4⇡ is called the vortex line tension
as it relates the energy and the total length of the vortex.

Note that the LIA model trivially leads to the LIA Kelvin wave dispersion relation

!LIA(k) = �
�⇤

4⇡
k2, (3.38)

that misses the logarithmic correction in the dispersion relations discussed in the previous sections.
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s(z, t) = X(z, t) + iY (z, t)
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3.3 Non-linear Kelvin wave dynamics

The aim of this section is to provide an introduction to the dynamics of vortex waves, including a short
description on the wave turbulence Kelvin wave cascade. We start by describing the basic non-linear
models of vortex dynamics.

3.3.1 Local Induced Approximation

The so-called Local Induced Approximation (LIA) is perhaps the simplest description of the dynamics of
a vortex line. As its names suggest, it is based on a local approximation that was introduced by Da Rios
in 1906 [Da 06].

Let us start by recalling that the translational velocity of a vortex ring of radius R and circulation �
is simply [Don91]

vring =
�

2⇡R
(log(R/a0) � d), (3.34)

where d is some core dependent constant. We parametrise the vortex line as s(⇣), where ⇣ is the natural
parametrisation.
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Figure 3.3: Sketch of the local induced
approximation model LIA. The vortex is
displayed in red. The blue arrows indicate
orientation of the velocity of the flow. The
red and brown arrow denote the vorticity
of the filament and the the vortex ring re-
spectively. Figure courtesy of U. Giuriato,
adapted from his Ph.D. thesis [Giu20].

The LIA model assumes that each point of the vortex line
moves with the velocity of a vortex ring tangent to that point
(respecting its vorticity orientation) and of radius equal to the
radius of curvature of that point. This is clearly sketched in
figure 3.3. The unit binormal vector bb indicates the direction
in which a vortex point will move. Note that it is in the
opposite direction respect to the flow around the vortex. The
LIA model, is then simply given by

ṡ =
�⇤

4⇡R
bb =

�⇤

4⇡
s0 ⇥ s00, (3.35)

where the dot and primes denote derivatives respect to time
and ⇣ respectively. The pre-factor is ⇤ = log R0/a0 where R0

is the characteristic or mean radius, that is usually assumed
to be constant. Note that the LIA model conserves the total
vortex length

L =

Z ����
@s

@⇣

���� d⇣. (3.36)

In the case of an almost straight vortex aligned along the z
axis, the filament can be parametrised using cartesian coordi-
nates s = (X(z), Y (z), z). Denoting by s(z) = X(z) + iY (z),
and assuming small deformations (|s0| ⌧ 1), the LIA equation
becomes
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The Hamiltonian structure of the LIA model is apparent. Its
Hamiltonian is actually an energy per unit of density. The

energy of Kelvin waves is given by EKW = ⇢0HLIA. The term ⇢0�2⇤/4⇡ is called the vortex line tension
as it relates the energy and the total length of the vortex.

Note that the LIA model trivially leads to the LIA Kelvin wave dispersion relation

!LIA(k) = �
�⇤

4⇡
k2, (3.38)

that misses the logarithmic correction in the dispersion relations discussed in the previous sections.
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3.3 Non-linear Kelvin wave dynamics

The aim of this section is to provide an introduction to the dynamics of vortex waves, including a short
description on the wave turbulence Kelvin wave cascade. We start by describing the basic non-linear
models of vortex dynamics.

3.3.1 Local Induced Approximation

The so-called Local Induced Approximation (LIA) is perhaps the simplest description of the dynamics of
a vortex line. As its names suggest, it is based on a local approximation that was introduced by Da Rios
in 1906 [Da 06].

Let us start by recalling that the translational velocity of a vortex ring of radius R and circulation �
is simply [Don91]

vring =
�

2⇡R
(log(R/a0) � d), (3.34)

where d is some core dependent constant. We parametrise the vortex line as s(⇣), where ⇣ is the natural
parametrisation.
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Figure 3.3: Sketch of the local induced
approximation model LIA. The vortex is
displayed in red. The blue arrows indicate
orientation of the velocity of the flow. The
red and brown arrow denote the vorticity
of the filament and the the vortex ring re-
spectively. Figure courtesy of U. Giuriato,
adapted from his Ph.D. thesis [Giu20].

The LIA model assumes that each point of the vortex line
moves with the velocity of a vortex ring tangent to that point
(respecting its vorticity orientation) and of radius equal to the
radius of curvature of that point. This is clearly sketched in
figure 3.3. The unit binormal vector bb indicates the direction
in which a vortex point will move. Note that it is in the
opposite direction respect to the flow around the vortex. The
LIA model, is then simply given by

ṡ =
�⇤

4⇡R
bb =

�⇤

4⇡
s0 ⇥ s00, (3.35)

where the dot and primes denote derivatives respect to time
and ⇣ respectively. The pre-factor is ⇤ = log R0/a0 where R0

is the characteristic or mean radius, that is usually assumed
to be constant. Note that the LIA model conserves the total
vortex length

L =

Z ����
@s

@⇣

���� d⇣. (3.36)

In the case of an almost straight vortex aligned along the z
axis, the filament can be parametrised using cartesian coordi-
nates s = (X(z), Y (z), z). Denoting by s(z) = X(z) + iY (z),
and assuming small deformations (|s0| ⌧ 1), the LIA equation
becomes

i�ṡ =
�HLIA

�s⇤
= �

�2⇤

4⇡

@2s

@z2
, with HLIA =

�2⇤

4⇡

Z
|
@s

@z
|
2dz.

(3.37)
The Hamiltonian structure of the LIA model is apparent. Its
Hamiltonian is actually an energy per unit of density. The

energy of Kelvin waves is given by EKW = ⇢0HLIA. The term ⇢0�2⇤/4⇡ is called the vortex line tension
as it relates the energy and the total length of the vortex.

Note that the LIA model trivially leads to the LIA Kelvin wave dispersion relation

!LIA(k) = �
�⇤

4⇡
k2, (3.38)

that misses the logarithmic correction in the dispersion relations discussed in the previous sections.
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Biot-Savart description of a perturbed straight vortex 
[Sonin 87 - Svistunov 95]

Kelvin-wave cascade
Vortex filament model
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b(⇣, t) =
s
�
⇥ s

��

|s� ⇥ s��|
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Figure 3.3: Sketch of the local induced approx-
imation. The vortex is displayed in red. Figure
courtesy of U. Giuriato.

The LIA model assumes that each point of the vortex
lines moves with a velocity of a vortex ring tangent to
that point and of radius equal to the radius of curvature
of that point. This is clearly sketched in figure 3.3. The
unit binormal vector indicates the direction in which a
vortex point will move. The LIA model, is then simply
given by

ṡ =
�⇤

4⇡R
b̂ =

�⇤

4⇡
s
0
⇥ s00, (3.33)

where the dot and primes denote derivatives respect to
time and ⇣ respectivelly. The prefactor ⇤ = log R0/a0
with R0 the characteristic or mean radius, that is usu-
ally assumed to be constant. Note that the 3.33 model
conserves the total vortex length

L =

Z ����
@s

@⇣

���� d⇣. (3.34)

Note that in the case of an almost straight vor-
tex aligned along the z axis, the filament can be
parametrised using the cartesian coordinates s =
(X(z), Y (z), z). Denoting by s(z) = X(z) + iY (z), and
assuming small deformations (|s0| ⌧ 1), the LIA equa-

tions become

� i�ṡ =
�HLIA

�s⇤
= �

�2⇤

4⇡

@2s

@z2
, with HLIA =

�2⇤

8⇡

Z
|
@s

@z
|
2dz. (3.35)

The Hamiltonian structure of the LIA model is apparent. The term ⇢0�2⇤/4⇡ is usually called the vortex
line tension as related the energy and length of the vortex.

Note that the LIA model trivially leads to the LIA Kelvin wave dispersion relation

⌦LIA(k) = �
�⇤

4⇡
k2, (3.36)

that misses the logarithmic correction present in the dispersion relations discussed in the previous sections.
[Check all the constants and signs. Take a uniform notation for KW dispersion relation.]

3.3.2 Non-local model for an almost straight vortex

As it was discussed in Chapter ??, a better description of the dynamics of a vortex filament is given by
replacing the self-induced vortex velocity by the full Biot-Savart integral. We recall the model here

ṡ(⇣) =
�

4⇡

I
ds(⇣ 0) ⇥ (s(⇣) � s(⇣ 0))

|s(⇣) � s(⇣ 0|3
, (3.37)

where the integral extends over all the vortices and has to be regularised introducing vortex core cut-o↵.
As one could expect, there is a much simpler form in the case of an almost straight vortex. Using

a cartesian parametrisation it was shown by Sonin [Son87] and Svistunov [Svi95] that vortex filament
method can be reduced to the following non-local Hamiltonian equations

i�ṡ(z) =
�HNL

�s⇤(z)
, HNL =

�2

4⇡

Z
1 + Re[s0⇤(z1)s0(z2)]p

(z1 � z2)2 + |s(z1) � s(z2)|2
dz1dz2. (3.38)
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s(z, t) = X(z, t) + iY (z, t)
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3.3. NON-LINEAR KELVIN WAVE DYNAMICS CHAPTER 3. KELVIN WAVES

Assuming that waves have a period L, the vortex disturbance can be written as s(z) = ��1/2P
k ak(t)eikz.

In these new variables, the equations for the vortex displacement becomes

i
dak
dt

=
@H

@a⇤k
, with H[a, a⇤] =

1

L
H[z, z⇤]. (3.39)

Furthermore, if the amplitude of waves are small, the new Hamiltonian can be expressed as

H =
X

k

!k|ak|
2 + H4 + H6 + . . . , (3.40)

where Hn is of order n on the wave amplitude an thus contains the interaction of n waves. An expression
for those high order terms can be found for instance in [LN10; Bou+11; Lau+10]. The dispersion relation
is thus given by !k and it is found to be

⌦NL(k) = !k = �
�

4⇡
k2(log (k`) � ⇤), (3.41)

where here ⇤ = log (`/a0). The length ` is an IR cut-o↵ that here represents the mean inter-vortex
distance at which the description of Kelvin wave propagating in isolated vortices breaks down. Note that,
if the logarithmic correction is neglected, H2 reduces to the LIA Hamiltonian (3.35). Note that, as H2 is
quadratic, waves with di↵erent k do not interact, therefore energy can not be redistributed among di↵erent
modes. High order terms are responsible to transfer the energy along scales. Such energy exchange is
described by the theory of wave turbulence.

3.3.3 Theoretical description of the Kelvin wave cascade

A brief description of the weak wave turbulence theory

In this section we intend to provide a very brief overview of the wave turbulence theory. Only the final
results of the theory will be presented in order to give some elements to understand later the Kelvin
wave cascade. The interested reader is directed for instance to the book [Naza] to see the derivation and
applications of the theory.

As in classical turbulence, where energy is transferred along scales in a cascade process thanks to
the non-linear interaction of “eddies” [frisch], non-linear waves interact and transfer energy or other
invariants with a constant flux. When the scales of energy injection and dissipation are well separated,
an out-of-equilibrium state known as wave turbulence emerges. Such cascade process is depicted in figure
3.4.a, where a direct energy cascade and an inverse wave-action cascade takes place. The wave-action is
an extra invariant of some non-linear wave systems as free excitations of the Gross-Piteavskii equation
that we will explain below.

For sake of simplicity, we will consider here a non-linear wave system with a cubic non-linearity. In
general, after performing a Fourier transform, and eventually of some change of variables, such system
can be rewritten as

dak
dt

= is!ka
s
k + ✏2

X

s1,s2,s3

Z
Ls,s1,s2,s3
k,k1,k2,k3

�(k + s1k1 + s2k2 + s3k3)a
s1
k1

as2k2
as3k3

dk1dk2dk3, (3.42)

where s, s1, s2, s3 = ±1 and we use the notation a+k = ak and a�k = a⇤k. The term Ls,s1,s2,s3
k,k1,k2,k3

is the
interaction coe�cient and is is usually assumed to have some scaling properties with k. We have also
implicitly assumed that waves amplitudes have been rescaled so ak is of order one and ✏ is a small
parameter.

The theory of weak wave turbulence takes advantage of the small parameter ✏ to develop a close
model that can be treated analytically. Thanks to this small parameter, a large time scale separation
between the time associated to waves and the one related to the non-linear terms is ensured. This allow
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HNL =
X

k

!k|sk|2 +H4 +H6 + . . .
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 Vortex motion and Kelvin wave cascade
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a (wave-turbulence) 
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•Kivotides, Vassilicos, Samuel, Barenghi PRL 2001
•E. Kozik & B. Svistunov. PRL 2004
•L’vov & Nazarenko JETP 2010
•Boué et al PRB 2011
•Laurie and Baggaley PRE 2014
•many others works....

Wave turbulence predictions

EC.B.(k) ⇠ k�1Vinen et al. : 
(PRL 2003, J. Phys.: Condens. Matt. 2005)

Kozik-Svistunov (2004) :

EXACT SOLUTION FOR THE ENERGY SPECTRUM OF . . . PHYSICAL REVIEW B 84, 064516 (2011)

This understanding provides us with an effective 6-wave
mixing, allowing one to use standard procedure1,2 for the
statistical description of weak turbulence of Kelvin waves.
It is based on the assumption that the turbulent dynamics of
waves with small enough amplitude is chaotic and creates its
own ergodic measure. The simplifying nature of weak wave
turbulence is that, due to the existence of a small parameter,
the statistical description closes upon itself in terms of the pair
correlation function

nk(t) ≡ L
2π

〈bk(t)b∗
k(t)〉 , (7a)

which is also called the “wave action.” Hereafter the pointed
brackets stand for an average over the ergodic measure. The
aim of the theory is to analyze the solutions of the kinetic
equation of motion which is typically expressed as

dnk(t)
dt

= St(k,{nk′(t)}) , (7b)

where the term St(k,{nk′(t)}) is the so-called collision integral
with an integrand proportional to the square of the effective
interaction amplitude W . This term is a function of k and a
functional of nk′(t).1,4

The main part of the Kelvin-wave energy E in the regime
of weak wave turbulence is given by E2 = 〈H2〉, where
H2 is defined by Eq. (5b). Together with Eq. (7a) this
gives

E = 2π

L
∑

k

ωknk =
∫ ∞

−∞
ωknkdk

=
∫ ∞

0
ωkNkdk ≡

∫ ∞

0
Ek dk. (8a)

Here we introduce the energy density in the k space,

E(k) ≡ Ek = ωkNk, (8b)

which traditionally is called the “energy spectrum,” and
we define the “wave action spectrum” as Nk = nk + n−k,
where k = |k|. According to Eq. (5c) in the leading in #
approximation the energy spectrum of Kelvin waves is related
to the wave action Nk as follows:

Ek = #κ

4 π
k2 Nk. (8c)

Up to this point these considerations are agreed upon by one
and all, and are the basis of further developments.

B. The controversy

Recently Kosik and Svistunov16 derived an energy spec-
trum of Kelvin-wave turbulence:

EKS (k) = CKS

#κ7/5 ε1/5

k7/5
, (9a)

where ε is the energy flux over scales and CKS is a yet unknown
dimensionless constant. Later L’vov and Nazarenko derived a

very different result for the same spectrum:

ELN (k) = CLN

#κ ε1/3

&2/3 k5/3
, & ≡ 8 π E

#κ2
. (9b)

Here CLN is another dimensionless constant. Both spectra are
supposed to be “universal” (i.e., independent of details of the
energy forcing) in the the scaling range k > kf , where kf is
the forcing wave number.

The disagreement between the spectra (9) resulted in a
heated debate concerning the correct nature of the energy
spectrum. To identify the origin of this controversy we should
clearly state that both results (9) were obtained within the same
formal setup described in the previous subsection under the
same set of assumptions about small nonlinearity and random
phases. Therefore the difference between the spectra must
originate from one or more mistakes made by either or both
derivations. Indeed, we will argue that the mistake leading
to the wrong result (9a) is in the wrong assumption about
the asymptotic behavior of the effective amplitude W4,5,6

1,2,3 in
the region where one of the wave vectors in the interacting
sextet is much smaller than at least one other wave vector
from the same sextet. The form of this asymptotics crucially
affects the nature of the energy transfer in the Kelvin-wave
cascade.

The derivation of the interaction vertex W4,5,6
1,2,3 for Kelvin-

wave turbulence is not an easy task. In Ref. 16 the ex-
plicit form of W4,5,6

1,2,3 was not presented. Instead, the au-
thors “simulated the collision integral by a Monte Carlo
method” with the conclusion that it converges and the
main contribution to the energy evolution of Kelvin wave
with given k-wave vector originates from the energy ex-
change with other Kelvin waves with k′ ∼ k. This state-
ment of the locality of the energy transfer allowed the
authors to use a dimensional estimate that leads to the the
spectrum (9a).

This result was criticized in Ref. 17 where an explicit ex-
pression for the interaction amplitudeW4,5,6

1,2,3 (in the asymptotic
region) was derived:

W3,4,5
k,1,2 = −3kk1k2k3k4k5

4πκ
. (10a)

Based on this equation, it was shown analytically in
Ref. 17 that the collision integral diverges. Moreover, as
found in Ref. 17, two important sets of terms in W3,4,5

k,1,2 of
the order of unity were overlooked in Ref. 16. One was
the consequence of a trivial algebraic mistake in the Taylor
expansion in Eq. (10), where the authors forgot to expand the
denominator. In addition, in Ref. 16 there was a conceptual
mistake: In the kinetic equation (see below) the conservation
of energy requires the exact frequency-resonance condition
that accounts for the sub-leading contribution 1ωk , (5c), while
cancellation of linear in # terms in W3,4,5

k,1,2 takes place only
on the local induction approximation manifold. Remaining
contributions of the order of unity to W3,4,5

k,1,2 were omitted
in Ref. 16. It remains unclear how Ref. 16 succeeded to
state convergence of the collision integral; this must be either
due to a mistakes in the calculation of W3,4,5

k,1,2 or due to
an inaccurate implementation of the Monte Carlo numerical
procedure.
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with M being m4, the mass of the 4He atom (if the superfluid
is 3He then M is the mass of two atoms, 2m3).

An important step in studying Kelvin-wave turbulence
was done by Sonin27 and later by Svistunov,28 who found
a Hamiltonian form of the Biot-Savart Eq. (1) for a straight
vortex line aligned in the z direction, e.g., line (x,y) = (0,0).
Perturbing the line by small disturbances in the (x,y) plane,

w(z,t) = x(z,t) + iy(z,t), (2a)

one writes

iκ
∂w

∂t
= δH

δw∗ , (2b)

where δ(. . . )/δw∗ is the functional derivative of (. . . ) and
the superscript “ ∗ ” denotes complex conjugation. The Hamil-
tonian for the Biot-Savart equation H is the energy of the
system:29,30

H = κ2

4π

∫
1 + "(w′∗(z1)w′(z2))

√
(z1 − z2)2 + |w(z1) − w(z2)|2

dz1dz2 . (3)

Here we have used the notation w′(z) = dw/dz.
Like in most of the examples of wave turbulence mentioned

in the introduction, the theory for Kelvin waves starts by writ-
ing down a Hamiltonian equation for the complex canonical
wave amplitudes ak(t) and a∗

k(t) which are classical analogs
of the creation and annihilation Bose operators in quantum
mechanics.29,30

Consider an isolated straight vortex line on a periodic
domain of length L. One can write1,2

i
dak(t)

dt
= ∂H

∂a∗
k(t)

, (4)

where w(z,t) = κ−1/2 ∑
k ak(t) exp(ik · z). The new Hamilto-

nian H{a,a∗} ≡ H {w,w∗}/L is the density of the old one and
is a function of all ak(t) and a∗

k(t) taken at the same time.
For small Kelvin-wave amplitudes (inclination angles) the

Hamiltonian can be expanded with respect to ak ,a∗
k . The

explicit form of H , Eq. (3), dictates an expansion of H in
ak and a∗

k with even powers only,

H = H2 + Hint, Hint = H4 + H6 + · · · . (5a)

The first term,

H2 =
∑

k

ωk ak a∗
k, (5b)

describes free propagation of Kelvin waves with a frequency
ωk . In turn, ωk should be expanded in inverse powers of the
large parameter &:

ωk && ωk +1 ωk,
&ωk = κ&

4π
k2,

(5c)
1ωk = −κ ln(k')

4π
k2, & = ln('/a).

Here a is the vortex line diameter and ' is the mean inter-vortex
distance at which the description of Kelvin waves propagating
along an individual vortex line fails. In typical experiments &,
in both 3He and 4He, is between 12 and 15.13 It can be shown16

that the leading approximation in & gives no energy exchange
between Kelvin waves and therefore one has to account in

H for sub-leading terms, zero order in &, denoted by the
superscript “1”.

The higher order expansion terms in Hint, H4, and H6
describe 2 ↔ 2 and 3 ↔ 3 scattering of Kelvin waves:

H4 = 1
4

∑

1+2=3+4

T 3,4
1,2 a1a2a

∗
3a

∗
4 , aj ≡ a(kj ,t) , (5d)

H6 = 1
36

∑

1+2+3=4+5+6

W 4,5,6
1,2,3 a1a2a3a

∗
4a∗

5a
∗
6 . (5e)

Equations for the terms of order &1 and &0 in the in-
teraction amplitudes T 3,4

1,2 ≡ T (k1,k2|k3,k4) and W 4,5,5
1,2,3 ≡

W (k1,k2,k3|k4,k5,k6) (denoted as &T 3,4
1,2 , 1T 3,4

1,2 and &W 4,5,6
1,2,3,

1W 4,5,6
1,2,3) were found in Ref. 16 and later confirmed in Ref. 17.
On the face of it, the leading term in Hint (i.e., H4)

describes a (2 ↔ 2) scattering; the sub-leading term, H6,
is responsible for the (3 ↔ 3) scattering. It was argued,
however, that the (2 ↔ 2) scattering cannot redistribute energy
between different scales. Therefore the (3 ↔ 3) scattering
becomes the leading interaction responsible for the interscale
energy transfers. This does not mean, however, that the
H4 Hamiltonian can be completely disregarded. Instead,
as explained in Refs. 1 and 17, ineffective Hamiltonians
(in our case H4) can be eliminated from the problem by a
proper nonlinear canonical transformation {a,a∗} ⇒ {b,b∗}.
This comes at a price of the appearance of “correction terms”
in the 6-wave mixing amplitude (which we have denoted with
a calligraphic vertex W , different from W ) in the Hamiltonian
H̃6:

H̃ =
∑

k

ωk bk b∗
k + H̃6 , (6a)

H̃6 = 1
36

∑

1+2+3=4+5+6

W4,5,6
1,2,3 b1b2b3b

∗
4b

∗
5b

∗
6 . (6b)

Note that the 4-wave mixing Hamiltonian has been eliminated
altogether by the canonical transformation {a,a∗} ⇒ {b,b∗}.
The remnant of this Hamiltonian appears as an additional
contribution to W . There is an exact relation between these
two vertices which is best represented by a schematic graphic
notation as

W4,5,6
1,2,3 = W 4,5,6

1,2,3 + 72 {T 2/ Ω} .

= +  72{ }
(6c)

The 72 additional contributions are schematically indicated as
72 {. . .} since the exact expression is too long to be written here
(one can handle them with symbolic computation software
such as MATHEMATICA). One observes that, on the one hand,
they are 6-wave mixing terms, but due to their internal structure
they can also be understood as the pairs of 4-wave mixing
amplitudes (mediated by a Green’s function 1/(). In the graph
shown in (6c), with incoming wave vectors k1, k2, k3 starting
from above and outgoing wave vectors k4, k5, k6, the fre-
quency ( = ω(k1) + ω(k2) − ω(k4) − ω(k1 + k2 − k4). The
72 contributions of the type shown in (6c) differ by the
directions of the arrows and by relabeling in k1, k2, k3 and
k4, k5, k6 groups.
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<latexit sha1_base64="UGPdQtPzt51qw6qvVsFYywAxuio="></latexit>

non-resonant

L’vov-Nazarenko (2010):

EXACT SOLUTION FOR THE ENERGY SPECTRUM OF . . . PHYSICAL REVIEW B 84, 064516 (2011)

This understanding provides us with an effective 6-wave
mixing, allowing one to use standard procedure1,2 for the
statistical description of weak turbulence of Kelvin waves.
It is based on the assumption that the turbulent dynamics of
waves with small enough amplitude is chaotic and creates its
own ergodic measure. The simplifying nature of weak wave
turbulence is that, due to the existence of a small parameter,
the statistical description closes upon itself in terms of the pair
correlation function

nk(t) ≡ L
2π

〈bk(t)b∗
k(t)〉 , (7a)

which is also called the “wave action.” Hereafter the pointed
brackets stand for an average over the ergodic measure. The
aim of the theory is to analyze the solutions of the kinetic
equation of motion which is typically expressed as

dnk(t)
dt

= St(k,{nk′(t)}) , (7b)

where the term St(k,{nk′(t)}) is the so-called collision integral
with an integrand proportional to the square of the effective
interaction amplitude W . This term is a function of k and a
functional of nk′(t).1,4

The main part of the Kelvin-wave energy E in the regime
of weak wave turbulence is given by E2 = 〈H2〉, where
H2 is defined by Eq. (5b). Together with Eq. (7a) this
gives

E = 2π

L
∑

k

ωknk =
∫ ∞

−∞
ωknkdk

=
∫ ∞

0
ωkNkdk ≡

∫ ∞

0
Ek dk. (8a)

Here we introduce the energy density in the k space,

E(k) ≡ Ek = ωkNk, (8b)

which traditionally is called the “energy spectrum,” and
we define the “wave action spectrum” as Nk = nk + n−k,
where k = |k|. According to Eq. (5c) in the leading in #
approximation the energy spectrum of Kelvin waves is related
to the wave action Nk as follows:

Ek = #κ

4 π
k2 Nk. (8c)

Up to this point these considerations are agreed upon by one
and all, and are the basis of further developments.

B. The controversy

Recently Kosik and Svistunov16 derived an energy spec-
trum of Kelvin-wave turbulence:

EKS (k) = CKS

#κ7/5 ε1/5

k7/5
, (9a)

where ε is the energy flux over scales and CKS is a yet unknown
dimensionless constant. Later L’vov and Nazarenko derived a

very different result for the same spectrum:

ELN (k) = CLN

#κ ε1/3

&2/3 k5/3
, & ≡ 8 π E

#κ2
. (9b)

Here CLN is another dimensionless constant. Both spectra are
supposed to be “universal” (i.e., independent of details of the
energy forcing) in the the scaling range k > kf , where kf is
the forcing wave number.

The disagreement between the spectra (9) resulted in a
heated debate concerning the correct nature of the energy
spectrum. To identify the origin of this controversy we should
clearly state that both results (9) were obtained within the same
formal setup described in the previous subsection under the
same set of assumptions about small nonlinearity and random
phases. Therefore the difference between the spectra must
originate from one or more mistakes made by either or both
derivations. Indeed, we will argue that the mistake leading
to the wrong result (9a) is in the wrong assumption about
the asymptotic behavior of the effective amplitude W4,5,6

1,2,3 in
the region where one of the wave vectors in the interacting
sextet is much smaller than at least one other wave vector
from the same sextet. The form of this asymptotics crucially
affects the nature of the energy transfer in the Kelvin-wave
cascade.

The derivation of the interaction vertex W4,5,6
1,2,3 for Kelvin-

wave turbulence is not an easy task. In Ref. 16 the ex-
plicit form of W4,5,6

1,2,3 was not presented. Instead, the au-
thors “simulated the collision integral by a Monte Carlo
method” with the conclusion that it converges and the
main contribution to the energy evolution of Kelvin wave
with given k-wave vector originates from the energy ex-
change with other Kelvin waves with k′ ∼ k. This state-
ment of the locality of the energy transfer allowed the
authors to use a dimensional estimate that leads to the the
spectrum (9a).

This result was criticized in Ref. 17 where an explicit ex-
pression for the interaction amplitudeW4,5,6

1,2,3 (in the asymptotic
region) was derived:

W3,4,5
k,1,2 = −3kk1k2k3k4k5

4πκ
. (10a)

Based on this equation, it was shown analytically in
Ref. 17 that the collision integral diverges. Moreover, as
found in Ref. 17, two important sets of terms in W3,4,5

k,1,2 of
the order of unity were overlooked in Ref. 16. One was
the consequence of a trivial algebraic mistake in the Taylor
expansion in Eq. (10), where the authors forgot to expand the
denominator. In addition, in Ref. 16 there was a conceptual
mistake: In the kinetic equation (see below) the conservation
of energy requires the exact frequency-resonance condition
that accounts for the sub-leading contribution 1ωk , (5c), while
cancellation of linear in # terms in W3,4,5

k,1,2 takes place only
on the local induction approximation manifold. Remaining
contributions of the order of unity to W3,4,5

k,1,2 were omitted
in Ref. 16. It remains unclear how Ref. 16 succeeded to
state convergence of the collision integral; this must be either
due to a mistakes in the calculation of W3,4,5

k,1,2 or due to
an inaccurate implementation of the Monte Carlo numerical
procedure.
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Figure 3.4: Sketch of wave turbulence cascades. a) Waves of large wavelengths interact and excite waves
at smaller wavelengths and those repeat the process until energy is dissipated. The inverse cascade process
can take place for wave action. b) Di↵erent kinds of wave are depicted by arrows with obvious notation
: 2 ! 1, 3 ! 1, 2 ! 2 and 3 ! 3.

figure 3.4.a, where a direct energy cascade and/or an inverse wave-action cascade takes place. The wave-
action is an extra invariant of some non-linear wave systems, such as the free particle excitations of the
Gross-Piteavskii equation (see Section 2.1.2).

For sake of simplicity, we will consider here a non-linear wave system with a cubic non-linearity. In
general, after performing a Fourier transform, and eventually of some change of variables, such system
can be rewritten as

das

k

dt
= �is!ka

s

k + ✏2
X

s1,s2,s3

Z
Ls,s1,s2,s3
k,k1,k2,k3

�(k + s1k1 + s2k2 + s3k3)a
s1
k1

as2
k2

as3
k3

dk1dk2dk3, (3.44)

where s, s1, s2, s3 = ±1 and we use the notation a+k = ak and a�k = a⇤k. The term Ls,s1,s2,s3
k,k1,k2,k3

is the
interaction coe�cient and is usually assumed to have some scaling properties with k. We have also
implicitly assumed that waves amplitudes have been rescaled so ak is of order one and ✏ is a small
parameter.

The theory of weak wave turbulence takes advantage of the small parameter ✏ to develop a closed
model that can be treated analytically. Thanks to this small parameter, a large time scale separation
between the time associated to waves and the one related to the non-linear terms is ensured. This allow
for a controlled multi-time expansion [NR11]. The main object of study in the theory is the particle
number spectrum defined as

nk =
1

V
h|ak|

2
i, (3.45)

where V is the volume of the system and average is performed over di↵erent kinds of fluctuations (e.g.
realisations of the initial conditions, forcing, etc.).

Summarised in one sentence, the theory of weak wave turbulence starts from nk, takes its time
derivative, use equation (3.44) several times, then take some very delicate limits and finally succeed to
obtain a closed equation for nk. This equation is called the kinetic wave equation and can be generically
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Constant arclength

Complex variables

Figure 3.3: Sketch of the local induced approx-
imation. The vortex is displayed in red. Figure
courtesy of U. Giuriato.

The LIA model assumes that each point of the vortex
lines moves with a velocity of a vortex ring tangent to
that point and of radius equal to the radius of curvature
of that point. This is clearly sketched in figure 3.3. The
unit binormal vector indicates the direction in which a
vortex point will move. The LIA model, is then simply
given by

ṡ =
�⇤

4⇡R
b̂ =

�⇤

4⇡
s
0
⇥ s00, (3.33)

where the dot and primes denote derivatives respect to
time and ⇣ respectivelly. The prefactor ⇤ = log R0/a0
with R0 the characteristic or mean radius, that is usu-
ally assumed to be constant. Note that the 3.33 model
conserves the total vortex length

L =

Z ����
@s

@⇣

���� d⇣. (3.34)

Note that in the case of an almost straight vor-
tex aligned along the z axis, the filament can be
parametrised using the cartesian coordinates s =
(X(z), Y (z), z). Denoting by s(z) = X(z) + iY (z), and
assuming small deformations (|s0| ⌧ 1), the LIA equa-

tions become

� i�ṡ =
�HLIA

�s⇤
= �

�2⇤

4⇡

@2s

@z2
, with HLIA =

�2⇤

8⇡

Z
|
@s

@z
|
2dz. (3.35)

The Hamiltonian structure of the LIA model is apparent. The term ⇢0�2⇤/4⇡ is usually called the vortex
line tension as related the energy and length of the vortex.

Note that the LIA model trivially leads to the LIA Kelvin wave dispersion relation

⌦LIA(k) = �
�⇤

4⇡
k2, (3.36)

that misses the logarithmic correction present in the dispersion relations discussed in the previous sections.
[Check all the constants and signs. Take a uniform notation for KW dispersion relation.]

3.3.2 Non-local model for an almost straight vortex

As it was discussed in Chapter ??, a better description of the dynamics of a vortex filament is given by
replacing the self-induced vortex velocity by the full Biot-Savart integral. We recall the model here

ṡ(⇣) =
�

4⇡

I
ds(⇣ 0) ⇥ (s(⇣) � s(⇣ 0))

|s(⇣) � s(⇣ 0|3
, (3.37)

where the integral extends over all the vortices and has to be regularised introducing vortex core cut-o↵.
As one could expect, there is a much simpler form in the case of an almost straight vortex. Using

a cartesian parametrisation it was shown by Sonin [Son87] and Svistunov [Svi95] that vortex filament
method can be reduced to the following non-local Hamiltonian equations

i�ṡ(z) =
�HNL

�s⇤(z)
, HNL =

�2

4⇡

Z
1 + Re[s0⇤(z1)s0(z2)]p

(z1 � z2)2 + |s(z1) � s(z2)|2
dz1dz2. (3.38)
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Constant arclength

Complex variables

Figure 3.3: Sketch of the local induced approx-
imation. The vortex is displayed in red. Figure
courtesy of U. Giuriato.

The LIA model assumes that each point of the vortex
lines moves with a velocity of a vortex ring tangent to
that point and of radius equal to the radius of curvature
of that point. This is clearly sketched in figure 3.3. The
unit binormal vector indicates the direction in which a
vortex point will move. The LIA model, is then simply
given by

ṡ =
�⇤

4⇡R
b̂ =

�⇤

4⇡
s
0
⇥ s00, (3.33)

where the dot and primes denote derivatives respect to
time and ⇣ respectivelly. The prefactor ⇤ = log R0/a0
with R0 the characteristic or mean radius, that is usu-
ally assumed to be constant. Note that the 3.33 model
conserves the total vortex length

L =

Z ����
@s

@⇣

���� d⇣. (3.34)

Note that in the case of an almost straight vor-
tex aligned along the z axis, the filament can be
parametrised using the cartesian coordinates s =
(X(z), Y (z), z). Denoting by s(z) = X(z) + iY (z), and
assuming small deformations (|s0| ⌧ 1), the LIA equa-

tions become

� i�ṡ =
�HLIA

�s⇤
= �

�2⇤

4⇡

@2s

@z2
, with HLIA =

�2⇤

8⇡

Z
|
@s

@z
|
2dz. (3.35)

The Hamiltonian structure of the LIA model is apparent. The term ⇢0�2⇤/4⇡ is usually called the vortex
line tension as related the energy and length of the vortex.

Note that the LIA model trivially leads to the LIA Kelvin wave dispersion relation

⌦LIA(k) = �
�⇤

4⇡
k2, (3.36)

that misses the logarithmic correction present in the dispersion relations discussed in the previous sections.
[Check all the constants and signs. Take a uniform notation for KW dispersion relation.]

3.3.2 Non-local model for an almost straight vortex

As it was discussed in Chapter ??, a better description of the dynamics of a vortex filament is given by
replacing the self-induced vortex velocity by the full Biot-Savart integral. We recall the model here

ṡ(⇣) =
�

4⇡

I
ds(⇣ 0) ⇥ (s(⇣) � s(⇣ 0))

|s(⇣) � s(⇣ 0|3
, (3.37)

where the integral extends over all the vortices and has to be regularised introducing vortex core cut-o↵.
As one could expect, there is a much simpler form in the case of an almost straight vortex. Using

a cartesian parametrisation it was shown by Sonin [Son87] and Svistunov [Svi95] that vortex filament
method can be reduced to the following non-local Hamiltonian equations

i�ṡ(z) =
�HNL

�s⇤(z)
, HNL =

�2

4⇡

Z
1 + Re[s0⇤(z1)s0(z2)]p

(z1 � z2)2 + |s(z1) � s(z2)|2
dz1dz2. (3.38)
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Biot-Savart dynamics:

Non-local equation, needs to be regularised, dissipation 
is added in an ad-hoc manner

Gross-Pitaevskii dynamics:
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Superfluid turbulence has been the subject of many ex-
perimental and theoretical works for the last decades. It is
now possible to realize turbulent Bose-Einstein condensates
(BECs) [1], turbulent flows with 3He [2,3], and visualize
vortices in 4He [4]. As in classical turbulence [5], a Kol-
mogorov energy cascade has been observed experimentally
and numerically. In superfluids, this takes place at scales larger
than the mean intervortex distance ! [6–8]. At low temperature,
when damping due to mutual friction is negligible, it is
believed that dissipation at small scales is carried by phonon
radiation which dissipates energy into heat [9]. At scales
smaller than ! the energy is transferred down by a series
of reconnection processes of quantized vortices that excite
waves on the filaments. These perturbations, called Kelvin
waves (KWs), are known for more than one century [10]
in fluid dynamics. These waves obey a set of nonlinear
equations where the energy is transferred towards small
scales by a wave-turbulence cascade. The energy distribution
along different scales is crucial for the understanding of the
dissipative processes in superfluids. The energy spectrum of
such a cascade is not yet fully determined, except in the limit
of small-amplitude KWs, where the theory of weak turbulence
is applicable [11]. However, a heated debate on the locality of
KW energy transfer has taken place in the last years [12–17].
Two different groups, Kozik and Svistunov [18] and L’vov and
Nazarenko [19], starting from the very same equations and
by using the same theory, have derived two different spectra
(hereafter KS and LN spectra, respectively). The origin of this
controversy is mainly due to a symmetry argument by KS (tilt
of a vortex line) that eventually leads to a vanishing vertex in
the perturbative expansion. This leads to locality in the energy
transfer and makes the six-wave interaction theory realizable.
The energy spectrum found by KS is

EKS(k) ∼ ε1/5κ7/5k−7/5, (1)

where ε is the energy flux, κ is the circulation quantum, and k
is the wave vector. This symmetry argument was questioned by
LN and they claimed that the energy transfer is nonlocal. They
derived an effective four-wave interaction theory that leads to
the energy spectrum

ELN(k) ∼ κε1/3$−2/3k−5/3, (2)

where $ ∼ (1/κ)
∫

ELN(k)dk is the mean-square angular
deviation of the vortex. For more technical details on the con-
troversy see [13–17]. The exponent 7/5 = 1.4 and 5/3 ≈ 1.67
of (1) and (2) are supposed to be universal, but their relatively
close values makes it difficult to numerically elucidate which
theory is correct. A number of numerical works supporting
both theories have been published but none presenting strong
arguments to settle this controversy [17,20,21]. These works
are all done in the framework of the vortex filament with an
ad hoc dissipative mechanism. In the case of strong wave
turbulence, when the local slope of KW is order 1, weak
turbulence breaks down and Vinen et al. [22] propose a
spectrum scaling as k−1. Finally, It was suggested by Sonin
[16] that no universality can be expected.

In this Rapid Communication, we address the small-
amplitude KW cascade problem by performing direct numer-
ical simulations of the Gross-Pitaevskii equation (GPE). The
GPE describes a weakly interacting BEC at low temperature. It
is also expected to at least qualitatively reproduce the dynamics
of superfluid helium. As the Gross-Pitaevskii (GP) vortices can
naturally radiate and excite phonons no artificial dissipation
is needed. The (1D) KW occupation-number spectrum is
precisely obtained and data are found to support the wave-
turbulence prediction (LN) [19]. The KW spectrum is analyzed
within the dissipative range and an exponential decay is found.
Finally, the probability distribution function (PDF) of KW
amplitudes is observed to be Gaussian in the inertial range in
contrast with the power-law tails observed for modes in the
dissipative range.

The GPE describing a homogeneous BEC of volume V
with wave function ψ is given by

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ, (3)

where m is the mass of the condensed particles and g =
4πah̄2/m, with a the s-wave scattering length. Equation (3)
conserves the energy H =

∫
( h̄2

2m
|∇ψ |2 + g

2 |ψ |4)dx and the
number of particles N =

∫
|ψ |2dx. Madelung’s transforma-

tion ψ(x,t) =
√

ρ(x,t)
m

exp [i m
h̄
φ(x,t)] relates the wave function

ψ to a superfluid of density ρ(x,t) and velocity v = ∇φ,
where κ = h/m is the Onsager-Feynman quantum of velocity
circulation around the ψ = 0 vortex lines. When Eq. (3) is
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3D PDE but everything is regular. Effective dissipation is 
provided by acoustic emission.

One gets                but we need a filament          ! s(z, t)
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Superfluid turbulence

Is the Kelvin wave cascade relevant for a 
turbulent tangle?
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Quantum turbulence
Kelvin waves in a turbulent tangle

Kelvin waves

nk = |R̂KW(k)|2

A. Villois, G. Krstulovic, D. Proment and 
H. Salman. J. Phys.  A (2016)

A. Villois, D. Proment and 
G. Krstulovic. PRE 2016
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Quantum turbulence
Kelvin wave cascade
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FIG. 3. (Color online) a) PDFs of curvature  normalised
by their respective mean values hi at di↵erent times (same
legend as (b)). The inset displays the temporal evolution
of the mean and rms values of . b) PDFs of torsion ⌧ at
di↵erent times. The inset emphasises their ⌧

�3 power-law
tail. Resolution 2563.

small-scale quantities quantum turbulent tangles could
be interpreted as random vortices.

The large curvature fluctuations and the torsion fluc-
tuation about a zero mean suggest also the presence of
KWs at all scales propagating on quasi-planar vortex
rings. KWs have recently been identified in GP turbu-
lence, in particular within the Taylor Green flow [24],
but no information of energy repartition among scales
could be yet provided. By exploiting the accuracy of the
tracking algorithm we are able to directly detect KWs
on the vortex rings, even if their amplitudes is small
compare to the computational resolution. Competing
theories have been put forward to predict statistically
a power-law KW spectrum in the form of n(k) = k

�↵

(here k is the Kelvin wave number and n(k) the ampli-
tude square of such modes) and explain the energy trans-
fer rate through scales. Vinen et al. considered strong
nonlinear interactions and derived by a scaling argument
the exponent ↵V = 3 [25]. On the other hand, assuming
weak nonlinearity, that is small amplitude KWs com-
pare to their respective wavelengths, Kozik&Svistunov
[26] and L’vov&Nazarenko [12] obtained the exponents
↵KS = 17/5 and ↵LN = 11/3 respectively, considering
two di↵erent orders of interaction. We compute the KW
spectra of the 50 largest rings during the evolution of the
tangle applying a Gaussian kernel in order to establish
the unperturbed ring (see Supplemental Material for de-
tails). The spectra, averaged over the rings, are shown
for di↵erent times in Fig.4a. It is evident that all accessi-
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FIG. 4. (Color online) a) Temporal evolution of KW spectrum
(averaged over the 50 largest rings). Resolution 2563. b) KW
spectrum at t ⇠ 5 (averaged over the 50 largest rings) for
run at resolution 5123. The dashed line displays the k

�11/3

scaling. The inset displays the respective k
11/3 (solid blue)

and k
17/5 (dashed red) compensated spectra.

ble KW modes get populated already at early times due
to reconnection events that trigger the cascade [27, 28].
We observe KW spectra behaving like power-laws with
an exponent independent of time where the best scaling
is appreciated at the time where the largest rings are
longer (4 � t  7). To get the best estimation of the
power-law exponent we repeated the Taylor-Green decay
in a simulation box with the same superfluid density but
twice the size; in this new configuration the spectra span
almost two wavenumber decades. In Figure 4b we show
the spectrum at t ⇠ 5: the observed power-law exponent
strongly agrees with the L’vov&Nazarenko ↵LN = 11/3
prediction. This can be better appreciated by looking at
the compensated spectra with respect to ↵LN and ↵KS

showed in the inset. This remarkable finding corrobo-
rates the result in favour of L’vov&Nazarenko prediction
previously obtained studying the KW oscillations about
a perfect straight line in the GP model [29].

Summarising, in this Letter we give evidences that the
theoretical predictions obtained using the vortex filament
model to study superfluid turbulence do apply to a vortex
tangle driven by the Gross-Pitaevskii equation. By using
a recently-developed numerical algorithm to track accu-
rately the vortex lines in the GP wave-function, we are
able to compute and observe the evolution of geometri-
cal, algebraic and topological quantities associated to the
vortex tangle. We observe that the vortex line density,
after an initial growing transient, decay in time obeying

Weak turbulence prediction(s) for 
Kelvin waves in a straight line:

nk ⇠ k�11/3

nk ⇠ k�17/5

L’vov & Nazarenko (JETP 2010):

Kozik & Svistunov (PRL 2004)
(locality of energy transfer, 6 waves)

(non-locality of energy transfer, 4 waves)

nk = |R̂KW(k)|2A. Villois, D. Proment and 
G. Krstulovic. PRE 2016

Ek ⇠ k�7/5

Ek ⇠ k�5/3

()

()

Take away message
QT is the result of the collective effect of 
many vortex lines each of them inducing a 
weak wave turbulent cascade, the whole 

leading to Kolmogorov turbulence. 



Strong turbulence

k0 ≪ k ≪ kℓ

E(k) = CKϵ2/3k−5/3

Kolmogorov scaling for 

the energy spectrum (K41) 

Experiments: Maurer et al. (1998), Salort et al. (2010), Tang et al. (2021), …

Simulations in GP: Nore et al. (1997), Kobayashi et al. (2005), Clark di Leoni et al. (2017), …

Simulations in vortex-filament method: Baggaley et al. (2012), …

Simultaneous observation of 
two cascades

kℓ ≪ k ≪ kξ

E(k) ∼ κϵ1/3ℓ−4/3k−5/3

Kelvin wave scaling for 

the energy spectrum 

Weak wave turbulence

Müller & Krstulovic - PRB (2020)29
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Quantum turbulence
Non-local high-order nonlinearity GP

https://gkwork.slack.com/files/UQH1TD4EB/F015L4GGT43/incompressible_spectra1024.pdf?origin_team=T90BUHR33&origin_channel=DQF620EL8


Energy spectrum compensated by Kelvin wave spectrum
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CLN ≈ 0.304

30

Initial condition Turbulence

2 341 0.01 0.412
2 171 0.01 0.494
2 341 0.01 0.255
3 341 0.02 0.235
4 341 0.03 0.227
2 683 0.01 0.139

L/ξk0 ϵ ℓ/L

EKW(k) = C3/5
LN

κΛϵ1/3ℓ−4/3

Ψ̃2/3k5/3

Kelvin wave 
spectrum

Energy spectrum compensated by Kolmogorov spectrum
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Quantum turbulence



Vortex reconnections

Kleckner & Irvine. Nature 
Phys. 2013

Experiments in water Numerical simulations 
of classical fluids

Numerical simulations of 
superfluids

Navier-Stokes equations Gross-Pitaevskii model

Ideal for a theoretical description! ⇠ ⌧ R



�±(t) = A±|�(t� tr)|1/2
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Minimal vortex distance 
Dimensional analisys: 
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Minimal vortex distance 
Analytic calculations

[�] =
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: vortex core size⇠
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We study the statistical properties of the Kelvin waves propagating along quantized superfluid vortices driven
by the Gross-Pitaevskii equation. No artificial forcing or dissipation is added. Vortex positions are accurately
tracked. This procedure directly allows us to obtain the Kevin-wave occupation-number spectrum. Numerical
data obtained from long time integration and ensemble average over initial conditions support the spectrum
proposed in L’vov and Nazarenko [JETP Lett. 91, 428 (2010)]. Kelvin-wave modes in the inertial range are found
to be Gaussian as expected by weak-turbulence predictions. Finally the dissipative range of the Kelvin-wave
spectrum is studied. Strong non-Gaussian fluctuations are observed in this range.
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Superfluid turbulence has been the subject of many ex-
perimental and theoretical works for the last decades. It is
now possible to realize turbulent Bose-Einstein condensates
(BECs) [1], turbulent flows with 3He [2,3], and visualize
vortices in 4He [4]. As in classical turbulence [5], a Kol-
mogorov energy cascade has been observed experimentally
and numerically. In superfluids, this takes place at scales larger
than the mean intervortex distance ! [6–8]. At low temperature,
when damping due to mutual friction is negligible, it is
believed that dissipation at small scales is carried by phonon
radiation which dissipates energy into heat [9]. At scales
smaller than ! the energy is transferred down by a series
of reconnection processes of quantized vortices that excite
waves on the filaments. These perturbations, called Kelvin
waves (KWs), are known for more than one century [10]
in fluid dynamics. These waves obey a set of nonlinear
equations where the energy is transferred towards small
scales by a wave-turbulence cascade. The energy distribution
along different scales is crucial for the understanding of the
dissipative processes in superfluids. The energy spectrum of
such a cascade is not yet fully determined, except in the limit
of small-amplitude KWs, where the theory of weak turbulence
is applicable [11]. However, a heated debate on the locality of
KW energy transfer has taken place in the last years [12–17].
Two different groups, Kozik and Svistunov [18] and L’vov and
Nazarenko [19], starting from the very same equations and
by using the same theory, have derived two different spectra
(hereafter KS and LN spectra, respectively). The origin of this
controversy is mainly due to a symmetry argument by KS (tilt
of a vortex line) that eventually leads to a vanishing vertex in
the perturbative expansion. This leads to locality in the energy
transfer and makes the six-wave interaction theory realizable.
The energy spectrum found by KS is

EKS(k) ∼ ε1/5κ7/5k−7/5, (1)

where ε is the energy flux, κ is the circulation quantum, and k
is the wave vector. This symmetry argument was questioned by
LN and they claimed that the energy transfer is nonlocal. They
derived an effective four-wave interaction theory that leads to
the energy spectrum

ELN(k) ∼ κε1/3$−2/3k−5/3, (2)

where $ ∼ (1/κ)
∫

ELN(k)dk is the mean-square angular
deviation of the vortex. For more technical details on the con-
troversy see [13–17]. The exponent 7/5 = 1.4 and 5/3 ≈ 1.67
of (1) and (2) are supposed to be universal, but their relatively
close values makes it difficult to numerically elucidate which
theory is correct. A number of numerical works supporting
both theories have been published but none presenting strong
arguments to settle this controversy [17,20,21]. These works
are all done in the framework of the vortex filament with an
ad hoc dissipative mechanism. In the case of strong wave
turbulence, when the local slope of KW is order 1, weak
turbulence breaks down and Vinen et al. [22] propose a
spectrum scaling as k−1. Finally, It was suggested by Sonin
[16] that no universality can be expected.

In this Rapid Communication, we address the small-
amplitude KW cascade problem by performing direct numer-
ical simulations of the Gross-Pitaevskii equation (GPE). The
GPE describes a weakly interacting BEC at low temperature. It
is also expected to at least qualitatively reproduce the dynamics
of superfluid helium. As the Gross-Pitaevskii (GP) vortices can
naturally radiate and excite phonons no artificial dissipation
is needed. The (1D) KW occupation-number spectrum is
precisely obtained and data are found to support the wave-
turbulence prediction (LN) [19]. The KW spectrum is analyzed
within the dissipative range and an exponential decay is found.
Finally, the probability distribution function (PDF) of KW
amplitudes is observed to be Gaussian in the inertial range in
contrast with the power-law tails observed for modes in the
dissipative range.

The GPE describing a homogeneous BEC of volume V
with wave function ψ is given by

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ, (3)

where m is the mass of the condensed particles and g =
4πah̄2/m, with a the s-wave scattering length. Equation (3)
conserves the energy H =

∫
( h̄2

2m
|∇ψ |2 + g

2 |ψ |4)dx and the
number of particles N =

∫
|ψ |2dx. Madelung’s transforma-

tion ψ(x,t) =
√

ρ(x,t)
m

exp [i m
h̄
φ(x,t)] relates the wave function

ψ to a superfluid of density ρ(x,t) and velocity v = ∇φ,
where κ = h/m is the Onsager-Feynman quantum of velocity
circulation around the ψ = 0 vortex lines. When Eq. (3) is
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ψ(x) ≈ 0
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ψ(x, t) = ei ℏ
2m (t−tr)∇2ψr(x)

hyperbolae

ψr(x, y, z) = 0

ψr(x, y, z) = z + i(az + βx2 − y2)
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Analytic calculations
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Fig. 1. (Color online) 3D plot showing the reconnection events explored numerically.
The initial configuration is displayed for the perpendicular vortex lines (a.1), the
anti-parallel lines (b.1) and the trefoil know (c.1). Figures (a.2), (b.2), (c.2) show
a corresponding zoom at the moment of reconnection. Figure (d.1) displays the
turbulent tangle and (d.2) a zoom in a place where a reconnection takes place. Red
and blue correspond to the reconnecting vortex filaments, the light blue iso-surfaces
render the density field at low values.

Approach and separation rates

Apart from the characteristic length scale › inherently present
in the GP model, when quantized vortices are considered, the
quantum of circulation � can be used to formulate an extra
length scale. Hence, by dimensional analysis the distance
between two reconnecting lines it is expected to be

”
±(t) = A

±
›

1≠2–±
|� (t ≠ tr)|–

±
, [4]

where –
± and A

± are dimensionless parameters and the super-
script ± stands for before (-) and after (+) the reconnection
event. The temporal evolution of the minimal distances be-
tween reconnecting filaments for the di�erent case studies are
displayed in Fig.2a-d. An explanatory movie of the knot re-
connection is also provided as SI. Remarkably, in all cases the
approach and separation rates follow the same dimensional
t
1/2-scaling. For each event we estimate the reconnection

time tr by doing a linear fit on ”
±(t)2 and compute tr as the

arithmetic mean between t
±
r that satisfy ”

±(t±
r )2 = 0. The

t
1/2-scaling extends beyond › and only slight deviations are

observed in some cases. Perhaps this fact could explain the
di�erent results for the scaling obtained in [16, 17, 32] where
it was concluded that the exponents before and after the re-
connection are di�erent. For instance in [16] it was found
that –

≠ œ (0.3, 0.44) and –
+ œ (0.6, 0.73) and in [32] that

either –
± = 1/2 or –

≠ = 1/3 and –
+ = 2/3 depending on

the initial vortex filament configuration. In these works the
time asymmetry was interpreted as a manifestation of the
irreversible dynamics due to sound emission; we will come
back to this interesting point in the Discussion. Let us under-
line for the moment that the tracking algorithm we used is
able to measure the inter-vortex distances even in presence
of sound waves (the Taylor-Green tangle analyzed contains
moderate sound at all scales) and no asymmetry concerning
the exponent is observed.

Although the measured exponent is always –
± = 1/2, the

full dynamics is not symmetrical with respect to the reconnec-
tion time as it can be immediately deduced by observing Fig.2.
By estimating the pre-factors A

± with a fit, shown in Fig.3a,
we conclude that these are always order of the unity but are
not universal. Moreover, we observe that the vortex filaments
usually separate faster than they approach (A≠ . A

+).

The tracking algorithm we use follows the pseudo-vorticity
and it naturally provides the orientation of the filament with
respect to the circulation. It thus allows us to compute the
tangent vectors to the lines and infer the orientation of the
filaments by evaluating the cosine of the angle ◊ between the
vectors at the two closest points as illustrated in Fig.3b and in
the supplied movie. By approaching to the reconnection point
each vortex filament develops a cusp-like structure character-
ized by high and localized values of the curvature (displayed
in green/blue colors). The temporal evolution of cos ◊ for all
the the case studies is presented in Fig.3.c. It is apparent
that, independently of the initial configurations, vortices are
always antiparallel at the reconnection point. This behavior
appears to be time-symmetric about the reconnection time
and is smooth, as highlighted in the inset of Fig.3.c where
we show cos ◊ in LogLin coordinates for a better view on the
short times before and after reconnection.

Analytical predictions using a linear approximation

The results presented in Figs. 2 and 3 support the analytical
predictions obtained by Nazarenko&West in [15]. Their semi-
nal calculations consider a planar reconnection of two vortex
filaments having a hyperbolic configuration at times close to
tr. As we shall observe in the following, vortex reconnections
not always fully lay in a plane and the local torsion of the
filament can play an important role. We generalize here the
calculations performed in [15] including torsion of the vortex
lines to understand its e�ect during the reconnection. Let
us assume that at the reconnection time tr and close to the
reconnection point the order parameter of two reconnecting
non-planar vortex lines is given by

Âr(x, y, z) = z + “

a
(x2 + y

2) + i(az + —x
2 ≠ y

2), [5]

with a ”= 0 and —≠“
“+1

> 0 (Nazarenko&West reconnecting
vortex profile is recovered by setting “ = 0). In the vicinity
of the vortex filaments, Â is small and the non-linear term
in Eq. (2) can be neglected. Within this approximation the
pre- and post-reconnection solution is given by Â(x, y, z, t) =
e

i(t≠tr)�
4fi Ò2

Âr(x, y, z). By solving Â(x, y, z, t) = 0 we can
explicitly obtain the temporal evolution of the vortex lines.
Eq. (4) is obtained with

–
+ = –

≠ = 1
2 and A

+

A≠ =
Ú

1 + “

— ≠ “
, [6]

for a > 0 and — < 1 ≠ 2“/a
2 (please refer to the SI for a figure

of the vortex profiles, details on the above calculations and
di�erent choices of a and —). Interestingly, the angle between
the asymptotes of the hyperbolic vortex configuration close to
reconnection is found to be „ = 2 tan≠1(A≠

/A
+).

The linear approximation also allows for computing the
curvature and torsion of the vortex lines. As pointed out
by Schwarz in [10], the curvature Ÿ

±(s, t) should present a
self-similar behavior close to the reconnection point of the
form Ÿ

±(s, t) = Ÿ
±
max(t)�±(’±), where ’

± = (s ≠ sr)Ÿ±
max(t),

sr is the coordinate of the reconnecting point and Ÿmax is the
maximum value of curvature. The present calculations predict

Ÿ
±
max(t) Ã |t ≠ tr|≠1/2 and Ÿ

+

max(t)
Ÿ

≠
max(t)

=
3

A
+

A≠

4
3

. [7]
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Separation rates

DRAFT
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Perpendicular Antiparallel Trefoil knot Tangle

Fig. 1. (Color online) 3D plot showing the reconnection events explored numerically.
The initial configuration is displayed for the perpendicular vortex lines (a.1), the
anti-parallel lines (b.1) and the trefoil know (c.1). Figures (a.2), (b.2), (c.2) show
a corresponding zoom at the moment of reconnection. Figure (d.1) displays the
turbulent tangle and (d.2) a zoom in a place where a reconnection takes place. Red
and blue correspond to the reconnecting vortex filaments, the light blue iso-surfaces
render the density field at low values.

Approach and separation rates

Apart from the characteristic length scale › inherently present
in the GP model, when quantized vortices are considered, the
quantum of circulation � can be used to formulate an extra
length scale. Hence, by dimensional analysis the distance
between two reconnecting lines it is expected to be

”
±(t) = A

±
›

1≠2–±
|� (t ≠ tr)|–

±
, [4]

where –
± and A

± are dimensionless parameters and the super-
script ± stands for before (-) and after (+) the reconnection
event. The temporal evolution of the minimal distances be-
tween reconnecting filaments for the di�erent case studies are
displayed in Fig.2a-d. An explanatory movie of the knot re-
connection is also provided as SI. Remarkably, in all cases the
approach and separation rates follow the same dimensional
t
1/2-scaling. For each event we estimate the reconnection

time tr by doing a linear fit on ”
±(t)2 and compute tr as the

arithmetic mean between t
±
r that satisfy ”

±(t±
r )2 = 0. The

t
1/2-scaling extends beyond › and only slight deviations are

observed in some cases. Perhaps this fact could explain the
di�erent results for the scaling obtained in [16, 17, 32] where
it was concluded that the exponents before and after the re-
connection are di�erent. For instance in [16] it was found
that –

≠ œ (0.3, 0.44) and –
+ œ (0.6, 0.73) and in [32] that

either –
± = 1/2 or –

≠ = 1/3 and –
+ = 2/3 depending on

the initial vortex filament configuration. In these works the
time asymmetry was interpreted as a manifestation of the
irreversible dynamics due to sound emission; we will come
back to this interesting point in the Discussion. Let us under-
line for the moment that the tracking algorithm we used is
able to measure the inter-vortex distances even in presence
of sound waves (the Taylor-Green tangle analyzed contains
moderate sound at all scales) and no asymmetry concerning
the exponent is observed.

Although the measured exponent is always –
± = 1/2, the

full dynamics is not symmetrical with respect to the reconnec-
tion time as it can be immediately deduced by observing Fig.2.
By estimating the pre-factors A

± with a fit, shown in Fig.3a,
we conclude that these are always order of the unity but are
not universal. Moreover, we observe that the vortex filaments
usually separate faster than they approach (A≠ . A

+).

The tracking algorithm we use follows the pseudo-vorticity
and it naturally provides the orientation of the filament with
respect to the circulation. It thus allows us to compute the
tangent vectors to the lines and infer the orientation of the
filaments by evaluating the cosine of the angle ◊ between the
vectors at the two closest points as illustrated in Fig.3b and in
the supplied movie. By approaching to the reconnection point
each vortex filament develops a cusp-like structure character-
ized by high and localized values of the curvature (displayed
in green/blue colors). The temporal evolution of cos ◊ for all
the the case studies is presented in Fig.3.c. It is apparent
that, independently of the initial configurations, vortices are
always antiparallel at the reconnection point. This behavior
appears to be time-symmetric about the reconnection time
and is smooth, as highlighted in the inset of Fig.3.c where
we show cos ◊ in LogLin coordinates for a better view on the
short times before and after reconnection.

Analytical predictions using a linear approximation

The results presented in Figs. 2 and 3 support the analytical
predictions obtained by Nazarenko&West in [15]. Their semi-
nal calculations consider a planar reconnection of two vortex
filaments having a hyperbolic configuration at times close to
tr. As we shall observe in the following, vortex reconnections
not always fully lay in a plane and the local torsion of the
filament can play an important role. We generalize here the
calculations performed in [15] including torsion of the vortex
lines to understand its e�ect during the reconnection. Let
us assume that at the reconnection time tr and close to the
reconnection point the order parameter of two reconnecting
non-planar vortex lines is given by

Âr(x, y, z) = z + “

a
(x2 + y

2) + i(az + —x
2 ≠ y

2), [5]

with a ”= 0 and —≠“
“+1

> 0 (Nazarenko&West reconnecting
vortex profile is recovered by setting “ = 0). In the vicinity
of the vortex filaments, Â is small and the non-linear term
in Eq. (2) can be neglected. Within this approximation the
pre- and post-reconnection solution is given by Â(x, y, z, t) =
e

i(t≠tr)�
4fi Ò2

Âr(x, y, z). By solving Â(x, y, z, t) = 0 we can
explicitly obtain the temporal evolution of the vortex lines.
Eq. (4) is obtained with

–
+ = –

≠ = 1
2 and A

+

A≠ =
Ú

1 + “

— ≠ “
, [6]

for a > 0 and — < 1 ≠ 2“/a
2 (please refer to the SI for a figure

of the vortex profiles, details on the above calculations and
di�erent choices of a and —). Interestingly, the angle between
the asymptotes of the hyperbolic vortex configuration close to
reconnection is found to be „ = 2 tan≠1(A≠

/A
+).

The linear approximation also allows for computing the
curvature and torsion of the vortex lines. As pointed out
by Schwarz in [10], the curvature Ÿ

±(s, t) should present a
self-similar behavior close to the reconnection point of the
form Ÿ

±(s, t) = Ÿ
±
max(t)�±(’±), where ’

± = (s ≠ sr)Ÿ±
max(t),

sr is the coordinate of the reconnecting point and Ÿmax is the
maximum value of curvature. The present calculations predict

Ÿ
±
max(t) Ã |t ≠ tr|≠1/2 and Ÿ

+

max(t)
Ÿ

≠
max(t)

=
3

A
+

A≠

4
3

. [7]

Villois et al.

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

PNAS | December 5, 2016 | vol. XXX | no. XX | 3

DRAFT

(t− tr)/τ
-50 0 50

δ(
t)
/ξ

0

2

4

6

8

10
δ−(t)
δ+(t)

|t− tr|/τ
10-1 100 101

δ(
t)
/ξ

10-1

100

101

Perpendiculara.1)

a.2)

t1/2

(t− tr)/τ
-20 0 20

δ(
t)
/ξ

0

5

10

15

20
δ−(t)
δ+(t)

|t− tr|/τ
10-1 100 101

δ(
t)
/ξ

10-1

100

101

102

Antiparallelb.1)

b.2)

t1/2

(t− tr)/τ
-40 -20 0 20 40

δ(
t)
/ξ

0

5

10

15
δ−(t)
δ+(t)

|t− tr|/τ
10-1 100 101 102

δ(
t)
/ξ

10-1

100

101

Trefoil knotc.1)

c.2)

t1/2

(t− tr)/τ
-0.5 0 0.5

δ(
t)
/ξ

0

1

2

3 δ−(t)
δ+(t)

|t− tr|/τ
10-3 10-2 10-1 100

δ(
t)
/ξ

10-2

10-1

100

101

Tangled.1)

d.2)

t1/2

Fig. 2. (Color online) Temporal evolution of the distance between the reconnecting vortex filaments before (blue) and after (red) the estimated reconnection time tr for the
perpendicular (a), antiparallel (b), trefoil knot (c) and turbulent tangle (d) configurations. For the turbulent tangle four different reconnection events have been tracked. a.2-d.2)
same plots as in a.1-d.1 but in LogLog scales.
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Fig. 3. (Color online) a) Fitted values of the pre-factors A± corresponding to Eq. (4).
b) An example of reconnecting filaments (trefoil knot case): the black dots represent
the points of minimal distances and are used to compute ”(t), the arrows are the
tangents of the filaments at those points, the reconnection angle ◊ is defined by
using the scalar product of the tangents. The coloring is proportional to the filament
curvature (low in red and high in green/blue). c) Temporal evolution of the cosine of
the reconnecting angle. The inset displays the same plot in LogLog scales.

Note that the t
≠1/2-scaling could be directly inferred by di-

mensional analysis arguments but not the scaling of the di-
mensionless pre-factors. Moreover these self-similar functions
�±(’±) can be expressed in compact forms for small values of
“ and (t ≠ tr) as:

�±(’) = 1
Ó

1 +
Ë!

Aû

A±

"2

+ 1
È

’2

Ô
3/2

+O

5
÷

±
“

2 (t ≠ tr)
·

6
, [8]

with ÷
± =

!
A

û
/A

±"
2 ≠1. This function corresponds to a cusp

in the vortex filament at t = tr and s = sr. The dependence

on the coe�cient
!
A

û
/A

±"
2 + 1 multiplying the self-similar

variable ’
± is unexpected and could not also be guessed by

dimensional arguments. We also remark that the self-similarity
is only exact when “ = 0 or ÷

± = 0.
Finally, the torsion T ±(s, t) of vortex line can be also

computed within this approximation. When “ ”= 0 torsion is
not identically null but it vanishes at sr, thus confirming that
reconnections occur locally on a plane. Also, it can be proved
that it changes sign linearly at sr with a slope that diverges
as “|t ≠ tr|≠1/2, creating shock-like structures. The slope
ratio before and after the reconnection satisfies the relation
dT +

ds /
dT ≠

ds

---
s=sr

= A
+

/A
≠.

We observe that in the context of Euler and Navier–Stokes
flows, dynamical equations for torsion and curvature have been
derived in [33]. To our knowledge, these non-linear equations
do not allow for predicting the generation of curvature cusps
and shock-like torsion structures. It would be interesting to
investigate if the scaling laws reported above also remain valid
in classical fluids and MHD flows.

Numerical measurements of the curvature and torsion

Motivated by the previous asymptotic results we analyze the
data coming from simulations. We start looking at the curva-
ture at a fixed time very close to the reconnection. In Fig.4.a
the curvature just before tr normalized using Ÿmax is shown for
all configurations. We indeed observe the formation of a cusp
at the reconnection point sr in all cases. Note that strictly
speaking, no universal function of the curvature is observed.
This is actually expected from the calculations of the curvature
Eq. (8) which shows a dependence on the values A

+
/A

≠ that
di�er from case to case. However, Eq. (8) suggests that if
the variable


1 + (A+/A≠)2(s ≠ sr)Ÿmax is used instead, a

universal form should be recovered. As shown in Fig.4.b the
data indeed collapse into one universal function when using
this new variable. The theoretical prediction Eq. (8) is also
plotted with dashed black line to appreciate the remarkable
agreement.

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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Geometry of reconnections
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Fig. 1. (Color online) 3D plot showing the reconnection events explored numerically.
The initial configuration is displayed for the perpendicular vortex lines (a.1), the
anti-parallel lines (b.1) and the trefoil know (c.1). Figures (a.2), (b.2), (c.2) show
a corresponding zoom at the moment of reconnection. Figure (d.1) displays the
turbulent tangle and (d.2) a zoom in a place where a reconnection takes place. Red
and blue correspond to the reconnecting vortex filaments, the light blue iso-surfaces
render the density field at low values.

Approach and separation rates

Apart from the characteristic length scale › inherently present
in the GP model, when quantized vortices are considered, the
quantum of circulation � can be used to formulate an extra
length scale. Hence, by dimensional analysis the distance
between two reconnecting lines it is expected to be

”
±(t) = A

±
›

1≠2–±
|� (t ≠ tr)|–

±
, [4]

where –
± and A

± are dimensionless parameters and the super-
script ± stands for before (-) and after (+) the reconnection
event. The temporal evolution of the minimal distances be-
tween reconnecting filaments for the di�erent case studies are
displayed in Fig.2a-d. An explanatory movie of the knot re-
connection is also provided as SI. Remarkably, in all cases the
approach and separation rates follow the same dimensional
t
1/2-scaling. For each event we estimate the reconnection

time tr by doing a linear fit on ”
±(t)2 and compute tr as the

arithmetic mean between t
±
r that satisfy ”

±(t±
r )2 = 0. The

t
1/2-scaling extends beyond › and only slight deviations are

observed in some cases. Perhaps this fact could explain the
di�erent results for the scaling obtained in [16, 17, 32] where
it was concluded that the exponents before and after the re-
connection are di�erent. For instance in [16] it was found
that –

≠ œ (0.3, 0.44) and –
+ œ (0.6, 0.73) and in [32] that

either –
± = 1/2 or –

≠ = 1/3 and –
+ = 2/3 depending on

the initial vortex filament configuration. In these works the
time asymmetry was interpreted as a manifestation of the
irreversible dynamics due to sound emission; we will come
back to this interesting point in the Discussion. Let us under-
line for the moment that the tracking algorithm we used is
able to measure the inter-vortex distances even in presence
of sound waves (the Taylor-Green tangle analyzed contains
moderate sound at all scales) and no asymmetry concerning
the exponent is observed.

Although the measured exponent is always –
± = 1/2, the

full dynamics is not symmetrical with respect to the reconnec-
tion time as it can be immediately deduced by observing Fig.2.
By estimating the pre-factors A

± with a fit, shown in Fig.3a,
we conclude that these are always order of the unity but are
not universal. Moreover, we observe that the vortex filaments
usually separate faster than they approach (A≠ . A

+).

The tracking algorithm we use follows the pseudo-vorticity
and it naturally provides the orientation of the filament with
respect to the circulation. It thus allows us to compute the
tangent vectors to the lines and infer the orientation of the
filaments by evaluating the cosine of the angle ◊ between the
vectors at the two closest points as illustrated in Fig.3b and in
the supplied movie. By approaching to the reconnection point
each vortex filament develops a cusp-like structure character-
ized by high and localized values of the curvature (displayed
in green/blue colors). The temporal evolution of cos ◊ for all
the the case studies is presented in Fig.3.c. It is apparent
that, independently of the initial configurations, vortices are
always antiparallel at the reconnection point. This behavior
appears to be time-symmetric about the reconnection time
and is smooth, as highlighted in the inset of Fig.3.c where
we show cos ◊ in LogLin coordinates for a better view on the
short times before and after reconnection.

Analytical predictions using a linear approximation

The results presented in Figs. 2 and 3 support the analytical
predictions obtained by Nazarenko&West in [15]. Their semi-
nal calculations consider a planar reconnection of two vortex
filaments having a hyperbolic configuration at times close to
tr. As we shall observe in the following, vortex reconnections
not always fully lay in a plane and the local torsion of the
filament can play an important role. We generalize here the
calculations performed in [15] including torsion of the vortex
lines to understand its e�ect during the reconnection. Let
us assume that at the reconnection time tr and close to the
reconnection point the order parameter of two reconnecting
non-planar vortex lines is given by

Âr(x, y, z) = z + “

a
(x2 + y

2) + i(az + —x
2 ≠ y

2), [5]

with a ”= 0 and —≠“
“+1

> 0 (Nazarenko&West reconnecting
vortex profile is recovered by setting “ = 0). In the vicinity
of the vortex filaments, Â is small and the non-linear term
in Eq. (2) can be neglected. Within this approximation the
pre- and post-reconnection solution is given by Â(x, y, z, t) =
e

i(t≠tr)�
4fi Ò2

Âr(x, y, z). By solving Â(x, y, z, t) = 0 we can
explicitly obtain the temporal evolution of the vortex lines.
Eq. (4) is obtained with

–
+ = –

≠ = 1
2 and A

+

A≠ =
Ú

1 + “

— ≠ “
, [6]

for a > 0 and — < 1 ≠ 2“/a
2 (please refer to the SI for a figure

of the vortex profiles, details on the above calculations and
di�erent choices of a and —). Interestingly, the angle between
the asymptotes of the hyperbolic vortex configuration close to
reconnection is found to be „ = 2 tan≠1(A≠

/A
+).

The linear approximation also allows for computing the
curvature and torsion of the vortex lines. As pointed out
by Schwarz in [10], the curvature Ÿ

±(s, t) should present a
self-similar behavior close to the reconnection point of the
form Ÿ

±(s, t) = Ÿ
±
max(t)�±(’±), where ’

± = (s ≠ sr)Ÿ±
max(t),

sr is the coordinate of the reconnecting point and Ÿmax is the
maximum value of curvature. The present calculations predict

Ÿ
±
max(t) Ã |t ≠ tr|≠1/2 and Ÿ

+

max(t)
Ÿ

≠
max(t)

=
3

A
+

A≠

4
3

. [7]
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Fig. 2. (Color online) Temporal evolution of the distance between the reconnecting vortex filaments before (blue) and after (red) the estimated reconnection time tr for the
perpendicular (a), antiparallel (b), trefoil knot (c) and turbulent tangle (d) configurations. For the turbulent tangle four different reconnection events have been tracked. a.2-d.2)
same plots as in a.1-d.1 but in LogLog scales.
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Fig. 3. (Color online) a) Fitted values of the pre-factors A± corresponding to Eq. (4).
b) An example of reconnecting filaments (trefoil knot case): the black dots represent
the points of minimal distances and are used to compute ”(t), the arrows are the
tangents of the filaments at those points, the reconnection angle ◊ is defined by
using the scalar product of the tangents. The coloring is proportional to the filament
curvature (low in red and high in green/blue). c) Temporal evolution of the cosine of
the reconnecting angle. The inset displays the same plot in LogLog scales.

Note that the t
≠1/2-scaling could be directly inferred by di-

mensional analysis arguments but not the scaling of the di-
mensionless pre-factors. Moreover these self-similar functions
�±(’±) can be expressed in compact forms for small values of
“ and (t ≠ tr) as:

�±(’) = 1
Ó

1 +
Ë!

Aû

A±

"2

+ 1
È

’2

Ô
3/2

+O

5
÷

±
“

2 (t ≠ tr)
·

6
, [8]

with ÷
± =

!
A

û
/A

±"
2 ≠1. This function corresponds to a cusp

in the vortex filament at t = tr and s = sr. The dependence

on the coe�cient
!
A

û
/A

±"
2 + 1 multiplying the self-similar

variable ’
± is unexpected and could not also be guessed by

dimensional arguments. We also remark that the self-similarity
is only exact when “ = 0 or ÷

± = 0.
Finally, the torsion T ±(s, t) of vortex line can be also

computed within this approximation. When “ ”= 0 torsion is
not identically null but it vanishes at sr, thus confirming that
reconnections occur locally on a plane. Also, it can be proved
that it changes sign linearly at sr with a slope that diverges
as “|t ≠ tr|≠1/2, creating shock-like structures. The slope
ratio before and after the reconnection satisfies the relation
dT +

ds /
dT ≠

ds

---
s=sr

= A
+

/A
≠.

We observe that in the context of Euler and Navier–Stokes
flows, dynamical equations for torsion and curvature have been
derived in [33]. To our knowledge, these non-linear equations
do not allow for predicting the generation of curvature cusps
and shock-like torsion structures. It would be interesting to
investigate if the scaling laws reported above also remain valid
in classical fluids and MHD flows.

Numerical measurements of the curvature and torsion

Motivated by the previous asymptotic results we analyze the
data coming from simulations. We start looking at the curva-
ture at a fixed time very close to the reconnection. In Fig.4.a
the curvature just before tr normalized using Ÿmax is shown for
all configurations. We indeed observe the formation of a cusp
at the reconnection point sr in all cases. Note that strictly
speaking, no universal function of the curvature is observed.
This is actually expected from the calculations of the curvature
Eq. (8) which shows a dependence on the values A

+
/A

≠ that
di�er from case to case. However, Eq. (8) suggests that if
the variable


1 + (A+/A≠)2(s ≠ sr)Ÿmax is used instead, a

universal form should be recovered. As shown in Fig.4.b the
data indeed collapse into one universal function when using
this new variable. The theoretical prediction Eq. (8) is also
plotted with dashed black line to appreciate the remarkable
agreement.
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�±(t) = A±|�(t� tr)|1/2
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FIG. 4. (Colour online) Sketch of the reconnecting filaments projected (a) onto the z = 0 plane and (b) onto the y = 0 plane.

by assuming, from now onwards, that B 6= D.
Finally, by simplifying the y-dependence in Eqs. (13) and (14), we find that the projection of the nodal lines onto

the y = 0 plane satisfies the equation

z =
BC � AD

2(B � D)⇣
x

2 +
D(C + D) + B(A + B)

4(B � D)p⇡⇣
�t , (18)

that is a parabola that shifts along the z-axis at constant speed.

B. Region of validity of the other wave-function parameters

We denote by R�
1 and R�

2 the sets of points of the two vortex filaments before reconnection and by R+
1 and

R+
2 the ones after reconnection. Without loss of generality we may assume: that (i) about the reconnection point,

R�
1 ⇢ {y > 0} and R�

2 ⇢ {y < 0} whereas R+
1 ⇢ {x < 0} and R+

2 ⇢ {x > 0}; and that (ii) the orientation of the
vorticity follows the arrows as in the sketch displayed in Fig. 4(a). In order to find the range of the admissible values
of the wave-function parameters p ± 1 and (A, B, C, D) 2 R of eq. (11), we thus need to impose the following validity
conditions.

• Existence of the hyperbola. At the reconnection time tr = 0 we want the hyperbola asymptotes y =
±

p
(C � A)/(B � D) x set by eq. (17) to be real (in other words we want the equation to describe a hy-

perbola and not an ellipse). This reduces to the condition

C � A

B � D
� 0 . (19)

• Convention on the location of the filaments. Our convention adopts that, about the reconnection point, the
positions of the filaments satisfy R�

1 ⇢ {y > 0} and R�
2 ⇢ {y < 0} whereas R+

1 ⇢ {x < 0} and R+
2 ⇢ {x > 0}.

Hence, by evaluating eq. (17) at times t < 0 and t > 0 we obtain that the following conditions, respectively,
must hold

(B � D) p (C + D + A + B) < 0 and (C � A) p (C + D + A + B) < 0 . (20)

• Convention on the vorticity orientation of the filaments. The orientation of the filaments can be evaluated by
computing the pseudo-vorticity ! = rRe( ) ⇥ rIm( ) of the wave-function in eq. (12) at its nodal lines [18].
In order to impose the vorticity orientations as the arrows sketched in Fig. 4(a) the following conditions

8
><

>:

p = �1

B < D

A > C

or

8
><

>:

p = 1

B > D

A < C

(21)

Linear (Schrodinger equation) theory:

A+

A� = cot

✓
�+

2

◆
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FIG. 1. (Color online) (a) Sketch of a vortex reconnection event in quantum fluids: at the reconnection time tr the reconnecting
filaments are locally tangent to the plane xOy, here depicted in grey, and form the reconnecting angle �

+. The vorticity of the
filaments is depicted with grey arrows. (b) The Hopf link initial condition used to create the di↵erent realizations, with visual
indication of the o↵set parameters (d1, d2).

parameter  of a BEC made of dilute locally-interacting
bosons, but qualitatively able to mimic a generic quan-
tum fluid [11]. The GP equation, casted in terms of the
healing length ⇠ and the sound velocity c, reads

i
@ 

@t
=

cp
2⇠

✓
�⇠2r2 +

m

⇢0
| |2 

◆
, (1)

where ⇢0 is the bulk superfluid density and m the mass
of a boson. When the GP equation is linearized about
the uniform bulk value | 0| =

p
⇢0/m, dispersive e↵ects

arise at scales smaller than ⇠ and (large-scale) sound
waves e↵ectively propagate at speed c. In this Letter
lengths and times are expressed in units of ⇠ and ⌧ = ⇠/c,
respectively. Thanks to the Madelung transformation
 (x, t) =

p
⇢(x, t)/m exp[i�(x, t)/(

p
2c⇠)], eq. (1) can

be interpreted as a model for an irrotational inviscid
barotropic fluid of density ⇢ and velocity v = r�. Vor-
tices arise as topological defects of circulation � = h/m =
2
p
2⇡c⇠ and vanishing density core size order of ⇠ [12].

In the previous formula, h is the Planck constant.
We integrate numerically the GP model using a stan-

dard pseudo-spectral code evolved in time by a forth-
order Runge–Kutta scheme. The computational box is
periodic with sides of length L = 128⇠; 2563 colloca-
tion points are used. The initial Hopf link is prepared
by superimposing two rings of radius R = 18⇠, each of
them lying on a plane orthogonal to the other. The order
parameter of each ring is numerically obtained by using
a Newton–Raphson and biconjugate-gradient technique
[13], allowing to minimize the initial sound excitations in
the system. A set of 49 di↵erent realizations are obtained
by changing the o↵sets (d1, d2) of one ring as sketched in
Fig.1(b), taking di 2 [�9⇠, 9⇠] with unit step of 3⇠. Dur-
ing the evolution one or more reconnection events occur.

It has been shown [14–17] that about the reconnection
event, the distance between the two filaments behaves as

�±(t) = A±(�|t� tr|)1/2 , (2)

where A± are dimensionless pre-factors and tr is the re-
connection time; the superscripts � and + label the cases
before and after the reconnection, respectively. In each
Hopf link realization, we carefully track [18] all recon-
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FIG. 2. (Color online) Values of approach and separation
pre-factors A

+ and A
�. Red points correspond to data of

the present work. Gray left and right triangles correspond to
reconnections of free and trapped vortices respectively, from
Galantucci et al.[16]; other symbols from Villois et al. [15].

necting events and measure A±. Their values are plot-
ted in red dots in Fig. 2. Remarkably, the reconnecting
filaments always separate faster (or at an almost equal
rate) than they approach, that is A+ � A�. The clear
asymmetry recorded in the distribution of the A±s is the
fingerprint of the irreversible dynamics characterising the
vortex reconnection process. For completeness, we also
report in the figure, using di↵erent symbols, the pre-
factor measurements obtained in previous works [15, 16],
which corroborate even further our results. In what fol-
lows we quantitatively relate the asymmetry in the dis-
tribution of the pre-factors with the irreversible energy
transfer between the vortex-type and density/phase ex-
citation families occurring during a reconnection event.
Previous numerical studies of the GP model have indeed
reported the clear emission of a sound pulse during re-
connection events [19, 20]. A series of snapshots showing
the sound pulse emitted during the decay of the Hopf
link in one of our realizations is reported in [1].
The simple linear theory neglecting the nonlinear term

of the GP model [14, 15], valid in the limit �± ! 0, pro-
vides an insight into the dynamics of reconnecting pa-
rameters as the the order parameter can be found ana-
lytically. It predicts that the filaments reconnect tangent
to a plane, in our reference frame the z = 0, see Fig. 1(a),

Quantum vortex reconnections

CHAPTER 4. QUANTUM VORTEX RECONNECTIONS 4.2. Irreversibility of vortex reconnections

-3 -2 -1 0 1 2 3
0

10

20

30

40

50

Figure 4.5: a) Squared distances �2 versus time of the reconnecting filaments. Time is expressed in units
of ⌧ = ⇠/c, with c the speed of sound. The grey-scale colour indicate the measured value of A+/A�

in each case. b) Values of approach and separation pre-factors A+ and A�. Red points correspond to
data of [VPK20]. Grey left and right triangles correspond to reconnections of free and trapped vortices
respectively, from Galantucci et al.[Gal+19]; other symbols from Villois et al. [VPK17].

is short enough. However, one needs to keep in mind that vortices get close to each other because of their
mutual hydrodynamic interaction, which is a fully non-linear process. Without non-linear interactions, the
fluid has no pressure (other than the quantum part) and vortices do not present hydrodynamic behaviour.

4.2 Irreversibility of vortex reconnections

As we discussed in the previous section, the linear regime is a powerful mathematical tool to study
reconnections and to link the filaments before and after that event. The most important parameter that
fixes the reconnection is the approaching angle, that is simply related to the ratio of the pre-factors
A+/A� of formula (4.6). At this point, we do not have any knowledge of their values or even of their
ratio. In Villois et al. [VPK17] we have studied several configurations having very di↵erent geometries
and we always observed that A+ > A�, in other words, vortices separate faster than they approach. This
finding motivated a recent work [VPK20], where we study systematically more than 40 reconnections.

In reference [VPK20] we considered a Hopf link (two linked rings) and we varied their o↵set. We
evolved the Hopf link under GP evolution and carefully tracked the vortices to compute their reconnecting
distance. The rate of approach and separation are displayed in Fig.4.5.a. The very first remark is the good
agreement with the t1/2 law. As manifest in the colormap, we always observe that A+ > A�. This finding
is put in evidence in Fig.4.5.b, where all the values of A� are plotted against A+ for all the reconnections,
including data from other works. For almost all reconnections we observe A�

⇡ 0.5, that is in agreement
with theoretical prediction of A�

2 (0.45, 4.8) by Boué et al. [Bou+13a]. A natural question arises, if the
GP evolution is time reversible, why do we observe this time asymmetry? In other words, if an educated
observer is provided with data from reconnections, he or she should be able to tell if the provided data is
stored forward or backward in time.

In Villois et al. [VPK20], we provide an explanation to the observation in Fig.4.5. In a nutshell, the
explanation is that in order to observe a reconnection with A+ < A�, we have to provide energy to the
vortices, so this process should be generically excluded. We demonstrated that there is a loss of energy
and momentum from the vortices during the reconnection process. As the dynamics is conservative, the
energy and momentum need to be converted into compressible degrees of freedom. We observed a pulse
that is emitted during the reconnection and we were able to find analytically its direction.

We have shown that there is an intrinsic irreversibility in the process of superfluid vortex reconnections.
Reconnections generically imply a loss (or irreversible transfer) of momentum and energy. We can thus
understand this process as a route to reach thermal equilibrium. What does it happen in classical fluids?
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FIG. 4. (Color online) (a) Relative increase of compressible
kinetic energy (solid blue) and relative vortex length change
(dashed red) about a reconnection event (denoted by the red
dots) for a typical realization. The green area corresponds
to the interval defined by �

±(t)  �lin = 6⇠. (b) Relative
energy transferred to waves during the reconnection process.
The cyan zone denotes the allowed values from the matching
theory.

the theoretical estimation �L, rendered in cyan color in
Fig. 4(b), are bounded between two lines obtained setting
⇤ = 0 (dashed line) and |⇤| ! 1 (solid line). The GP
data are all distributed within these admissible values,
thus confirming the accuracy of the matching theory.

Remarkably, the estimation of Epulse explains in a
straightforward way the time asymmetry between the
rates of approach and separation reported in Fig. 2. In-
dependently on the value of the concavity parameter ⇤,
the energy of the sound pulse is only non-negative when
A+ � A�, meaning that unless energy is externally pro-
vided to the reconnecting vortices, it is energetically im-
possible to have a reconnection event where A+ < A�,
or equivalently, where �+ > ⇡/2.

Closing remarks. In this Letter we reported numer-
ical evidence of the irreversible dynamics of vortex re-
connections in a scalar quantum fluid, and explain its
origin thanks to a matching theory developed concur-
rently in [1]. Our results can be extended to more compli-
cated quantum fluids where non-local interactions and/or
higher order nonlinearities are included, like BECs with
dipolar interactions, cold Fermi gases, and superfluid liq-
uid 4He.

In quantum fluid experiments, the detailed study of
vortex reconnections is still in its infancy. In current
BECs made of dilute gases, reconnecting vortices are cre-
ated only in a non-reproducible way using fast temper-

ature quenches [26]; however new protocols have been
proposed to create vortices in a reproducible manner [27].
In such setups, once the reconnection plane is identified,
it should be feasible to measure the rates of approach
and separation and detecting directionality of the sound
pulse, using for instance Bragg spectroscopy [28]. In
superfluid liquid 4He experiments, vortex reconnections
have been detected so far only at relatively hight tem-
perature where the normal component is non-negligible
[29]. This latter may provide energy but also dissipate it
through mutual friction, hence measuring experimentally
the distribution of the rates of approach and separation
at di↵erent temperatures would be particularly desirable.
Finally, let us come back to the concept of irreversibil-

ity. In the realizations presented in this Letter, almost
all of the superfluid kinetic energy is initially stored in
the vortex-type excitations. This is likely to cause the
observed statistical asymmetry in the distribution of the
rates of approach and separation to be maximized. At
finite temperatures or in a turbulent tangle, fluctuations
can provide extra energy to reduce this asymmetry, per-
haps allowing also for �+ > ⇡/2, but the time-asymmetry
should in principle remains as an inherent mechanism al-
lowing the system to reach the equilibrium. From a fluid
dynamical point of view, let us to remark that vortex
reconnections are allowed and regular, in classical fluids,
due to the presence of viscosity, while in quantum fluids,
thanks to a dispersive term. Showing whether the result-
ing dynamics of these two di↵erent fluids are equivalent
or not, in the limit where their respective regularization
scale tends to zero, is an appealing open problem. Com-
paring the results presented in this Letter with a similar
study in Navier–Stokes or a carefully regularized Biot-
Savart model might provide some insights on the sponta-
neous stochasticity and the dissipative anomaly of turbu-
lent flows, two concepts closely related to irreversibility.
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FIG. 6. A sketch of a reconnection process and matching asymptotics. When vortices are far apart their
dynamics if governed by the Biot-Savart equation, whereas when they are about to reconnect the process is
driven by the Schrödinger equation.

as illustrated in Figs. 7(a) and 7(b), respectively. Note that the assumption that the linear regime
description may be still valid at distances beyond the healing length ξ is justified by numerical
evidence [25].

A. The cylindrical region of integration

As detailed in the following, the calculations of the linear momentum and energy of the vortices
involve the integration over the full length of the filaments. As we are interested in their differences,
to simplify the problem we will consider only the segments of the filaments which lie inside the
cylinder of circle of radius R centered at the origin and having the cylindrical axis parallel to the

FIG. 7. Projections of the reconnecting filaments and the cylinder onto the plane z = 0 before the recon-
nection (a) and after the reconnection (b). Here the reconnection angle is φ+ = π/3.
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DRAFT

The algorithm is based on a Newton–Raphson method to find
zeros of Â and on the knowledge of the pseudo-vorticity field
W = ÒRe[Â] ◊ ÒIm[Â], always tangent to the filaments, to
follow vortex lines [2]. Starting from a point x0 where the
density |Â|2 is below a given small threshold (therefore very
close to a vortex), we define the orthogonal plane to the vortex
line using W(x0). The plane is then spanned by the two
directors û1 and û2 as illustrated in Fig.1. A better approxi-

w

û1

û2
�x0

Fig. 1. Sketch of the plane on which the Newton–Raphson method is implemented.

mation for the vortex position xv on the plane is then given
by x1 = x0 + ”x. Here the increment ”x is obtained using the
Newton–Raphson formula (the linear approximation):

0 = Â(x0 + ”x) ¥ Â(x0) + J(x0)”x , [10]

where J(x0) is the Jacobian matrix expressed as

J =
3

ÒRe[Â] · û1 ÒRe[Â] · û2
ÒIm[Â] · û1 ÒIm[Â] · û2

4
. [11]

The increment can be therefore calculated using ”x =
≠J≠1(x0) · (Re[Â(x0)], Im[Â(x0)])T . Su�ciently close to the
line the Jacobian matrix is always a non-singular 2 ◊ 2 matrix
so its inverse can be computed. We underline that the method
requires the evaluation of the Jacobian Eq. (11) at intermesh
points. Making use of the spectral representation of Â, we
can precisely compute those values using Fourier transforms.
This process can be iterated until the exact location xv is
determined upon a selected convergence precision.

To track the following vortex point of the same line we
use as a next initial guess x0 = xv + ’W, which is obtained
evolving along W by a small step ’. The process is reiterated
until the entire line is tracked and closed, then repeated with
another line until the whole computation domain has been
fully explored.

Linear approximation detailed calculations

A first analytical study of a reconnection event in the GP
model have been provided by Nazarenko and West [3], where
it is shown that two vortices are anti-parallel during a recon-
nection and their distance scales as ”(t) ≥ t1/2. In the same
spirit of the work [3], we assume that inside the vortex core
the non-linear term of the GP equation can be neglected and
so a reconnection event should be governed by the (linear)
Schrödinger equation. For the sake of simplicity, in dimension-
less units this equations reads

iˆtÂ + 1
2Ò2Â = 0. [12]

Note that we absorbed the parameters c and › in Eq. (5)
by a suitable time and space rescaling. We remark that in
[3] reconnections are studied just on a plane, whereas here
we consider vortex filaments with non-zero torsion. At the
reconnection time tr we use as initial condition the ansatz

Âr(x, y, z) = z + “
a

(x2 + y2) + i(az + —x2 ≠ y2). [13]

Looking for Âr = 0 one can recover the vortex profile, given
by the curves

R(s) =
3

s, ±s

Ú
— ≠ “
“ + 1 , ≠s2 “(— + 1)

a(“ + 1)

4
, [14]

where s is the parametrization of the curve. We note that
Eq. (14) requires that

— ≠ “
“ + 1 > 0. [15]

In figure 2 we plot the the vortex filaments R(s) (blue lines) for
our initial condition. The vortices projected on the x-y planes
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Fig. 2. Plot of the initial condition using “ = 0.01, — = 1/2 and a = 1. The vortex
filaments are shown in blue while their projection on the x-y is shown in orange.The
arrows identify the circulation around each vortex.

form two hyperbola (orange lines) crossing at the reconnection
point. We note that the values — and “ fix the angle

„ = 2 tan≠1
3Ú

1 + “
— ≠ “

4
[16]

between the two hyperbola. The arrows identify the circulation
around each vortex.

The formal solution of equation Eq. (12) is given by

Â(t) = ei 1
2 (t≠tr)Ò2

Âr [17]

where tr is the time when the reconnection occurs. The choice
of a second order polynomial for Âr allows us to find the exact
solution of Eq. (12):

Â(t) = z+ “

a
(x2 +y2)≠2t(—≠1)+i

1
az + —x2 ≠ y2 + 4(t ≠ tr) “

a

2
.

[18]
Assuming a > 0 and “ < — < a2≠2“

a2 the vortex lines before
the reconnection (t < tr) are given by

R≠
1,2(s, t) =(s, ±

Ú
(tr ≠ t)(a2(1 ≠ —) ≠ 2“) + as2(— ≠ “)

a(“ + 1)
,

(t ≠ tr)(a2(— ≠ 1) ≠ 2“2) ≠ a“(— + 1)s2

(“ + 1)a2 )
[19]
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DRAFT

The algorithm is based on a Newton–Raphson method to find
zeros of Â and on the knowledge of the pseudo-vorticity field
W = ÒRe[Â] ◊ ÒIm[Â], always tangent to the filaments, to
follow vortex lines [2]. Starting from a point x0 where the
density |Â|2 is below a given small threshold (therefore very
close to a vortex), we define the orthogonal plane to the vortex
line using W(x0). The plane is then spanned by the two
directors û1 and û2 as illustrated in Fig.1. A better approxi-

w

û1

û2
�x0

Fig. 1. Sketch of the plane on which the Newton–Raphson method is implemented.

mation for the vortex position xv on the plane is then given
by x1 = x0 + ”x. Here the increment ”x is obtained using the
Newton–Raphson formula (the linear approximation):

0 = Â(x0 + ”x) ¥ Â(x0) + J(x0)”x , [10]

where J(x0) is the Jacobian matrix expressed as

J =
3

ÒRe[Â] · û1 ÒRe[Â] · û2
ÒIm[Â] · û1 ÒIm[Â] · û2

4
. [11]

The increment can be therefore calculated using ”x =
≠J≠1(x0) · (Re[Â(x0)], Im[Â(x0)])T . Su�ciently close to the
line the Jacobian matrix is always a non-singular 2 ◊ 2 matrix
so its inverse can be computed. We underline that the method
requires the evaluation of the Jacobian Eq. (11) at intermesh
points. Making use of the spectral representation of Â, we
can precisely compute those values using Fourier transforms.
This process can be iterated until the exact location xv is
determined upon a selected convergence precision.

To track the following vortex point of the same line we
use as a next initial guess x0 = xv + ’W, which is obtained
evolving along W by a small step ’. The process is reiterated
until the entire line is tracked and closed, then repeated with
another line until the whole computation domain has been
fully explored.

Linear approximation detailed calculations

A first analytical study of a reconnection event in the GP
model have been provided by Nazarenko and West [3], where
it is shown that two vortices are anti-parallel during a recon-
nection and their distance scales as ”(t) ≥ t1/2. In the same
spirit of the work [3], we assume that inside the vortex core
the non-linear term of the GP equation can be neglected and
so a reconnection event should be governed by the (linear)
Schrödinger equation. For the sake of simplicity, in dimension-
less units this equations reads

iˆtÂ + 1
2Ò2Â = 0. [12]

Note that we absorbed the parameters c and › in Eq. (5)
by a suitable time and space rescaling. We remark that in
[3] reconnections are studied just on a plane, whereas here
we consider vortex filaments with non-zero torsion. At the
reconnection time tr we use as initial condition the ansatz

Âr(x, y, z) = z + “
a

(x2 + y2) + i(az + —x2 ≠ y2). [13]

Looking for Âr = 0 one can recover the vortex profile, given
by the curves

R(s) =
3

s, ±s

Ú
— ≠ “
“ + 1 , ≠s2 “(— + 1)

a(“ + 1)

4
, [14]

where s is the parametrization of the curve. We note that
Eq. (14) requires that

— ≠ “
“ + 1 > 0. [15]

In figure 2 we plot the the vortex filaments R(s) (blue lines) for
our initial condition. The vortices projected on the x-y planes
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Fig. 2. Plot of the initial condition using “ = 0.01, — = 1/2 and a = 1. The vortex
filaments are shown in blue while their projection on the x-y is shown in orange.The
arrows identify the circulation around each vortex.

form two hyperbola (orange lines) crossing at the reconnection
point. We note that the values — and “ fix the angle

„ = 2 tan≠1
3Ú

1 + “
— ≠ “

4
[16]

between the two hyperbola. The arrows identify the circulation
around each vortex.

The formal solution of equation Eq. (12) is given by

Â(t) = ei 1
2 (t≠tr)Ò2

Âr [17]

where tr is the time when the reconnection occurs. The choice
of a second order polynomial for Âr allows us to find the exact
solution of Eq. (12):

Â(t) = z+ “

a
(x2 +y2)≠2t(—≠1)+i

1
az + —x2 ≠ y2 + 4(t ≠ tr) “

a

2
.

[18]
Assuming a > 0 and “ < — < a2≠2“

a2 the vortex lines before
the reconnection (t < tr) are given by

R≠
1,2(s, t) =(s, ±

Ú
(tr ≠ t)(a2(1 ≠ —) ≠ 2“) + as2(— ≠ “)

a(“ + 1)
,

(t ≠ tr)(a2(— ≠ 1) ≠ 2“2) ≠ a“(— + 1)s2

(“ + 1)a2 )
[19]
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 (x, t) = ei
1
2 (t�tr)r2

 r(x)

 (x, t) = 0

DRAFT

while after the reconnection (t > tr)

R+
1,2(s, t) =(±

Ú
(t ≠ tr)(a2(1 ≠ —) ≠ 2“) + as2(1 + “)

a(— ≠ “)
, s,

(t ≠ tr)(a2(— ≠ 1) + 2“2) ≠ a“(— + 1)s2

(— ≠ “)a2 ).
[20]

From the above curves we observe that the two vortices ap-
proach along the y-direction and separate along the x-direction.
It follows that

”±(t) = |R±
1 (0, t) ≠ R±

2 (0, t)| =
Ô

2fiA±|t ≠ tr|1/2, [21]

where the ratio of pre-factors satisfies

A+

A≠ =
Ú

1 + “
— ≠ “

> 1. [22]

From equation Eq. (16) we can see how the quantity A+

A≠ is
related to the angle „. Calling „≠ the angle of the approaching
vortices and „+ the angle of the separating vortices, we
can conclude that for — < a2≠2“

a2 then „≠ > „+. On the
other hand, when — > a2≠2“

a2 the two vortices approach
along the x-direction and separate along the y-direction with
A+

A≠ =
Ò

—≠“
1+“ . For sake of completeness in Fig.3 we show the

values of the ratio A+

A≠ and the angles „≠ and „+ for di�erent
values of —. We note that A+

A≠ < 1 for a2≠2“
a2 < — < 1 + 2“

while A+

A≠ > 1 for — > 1 + 2“. As a final remark, we note that

no solutions

A+

A� < 1
A+

A� > 1
A+

A� > 1

� =
a2 � 2�

a2
� = 1 + 2�� = �0

�� > �+�� < �+ �� < �+

Fig. 3. Dependence of the ratio A+
A≠ and the angles „≠ and „+ on different values

of —.

changing the sign of a corresponds to look at the reconnection
back in time, hence each value of A+

A≠ in Fig.3 will then be
reversed.

The linear approximation also allows for computing the
curvature

Ÿ(s, t) = |RÕ(s, t) ◊ RÕÕ(s, t)|
|RÕ(s, t)|3 [23]

and torsion

T (s, t) = (RÕ(s, t) ◊ RÕÕ(s, t)) · RÕÕÕ(s, t)
|RÕ(s, t) ◊ RÕÕ(s, t)|2 [24]

of the vortex lines.
The curvature can be directly evaluated. Its maxima as a

function of time before and after reconnection are given by

Ÿ≠
max(t)

Ú
4“2(1 + —)2(a2(— ≠ 1) + 2“)(t ≠ tr) + a3(— ≠ “)2(1 + “)

a2(1 + “)2(a2(— ≠ 1) + 2“)(t ≠ tr)
[25]

and

Ÿ+
max(t) =

Ú
4“2(1 + —)2(a2(— ≠ 1) + 2“)(t ≠ tr) ≠ a3(— ≠ “)2(1 + “)2

a2(— ≠ “)(a2(— ≠ 1) + 2“)(t ≠ tr)
[26]

respectively. The present calculation predicts Ÿ±
max(t) Ã

|t ≠ tr|≠1/2 that also corresponds to a dimensional analy-
sis prediction. In addition, the linear approximation pre-
dicts that Ÿ+

max/Ÿ≠
max = (A+/A≠)3 in the limit of t æ tr.

This non-trivial result can not be found by dimensional ar-
guments. Moreover one can show that Ÿ± presents a self-
similar behavior close to the reconnection point of the form
Ÿ±(s, t) = Ÿ±

max(t)�±(’±), where ’± = (s ≠ sr)Ÿ±
max(t) and sr

is the coordinate of the reconnecting point. For small values
of “, these self-similar functions can be found to be

�±(’) =
1 ± 3

2
(—±1+1)’2

1+(—±1+1)’2 “

(1 + (—±1 + 1)’2)3/2 + O(“2)

= 1
Ë
1 +

1!
Aû

A±

"2
+ 1

2
›2

È3/2 + O

3
÷±“2 (t ≠ tr)

·

4
,

[27]

where ÷± = (Aû/A±)2≠1. Remarkably, once the ratio A+/A≠

is reintroduced, “ only appears as quadratic correction to the
self-similar form. Note that within this approximation, self-
similarity is destroyed when ÷±“2(t ≠ tr)/· is of order 1.

We note that in case one chooses — > a2≠2“
a2 then A+

A≠ =Ò
—≠“
1+“ and

#
�±(’)

$
—> a2≠2“

a2
=

#
�û(’)

$
—< a2≠2“

a2
. [28]

The former calculations were evaluated using a symbolic com-
putation software.

Finally, the torsion T ±(s, t) of vortex line can be also com-
puted within this approximation. It vanishes at sr (suggesting
a locally planar reconnection), however it changes sign linearly
at this point. Its slope is given by

dT +

ds
= ≠“

3
Ô

2(1 + —)
a(— ≠ “)


(t ≠ tr)(a2(1 ≠ —) ≠ 2“)

, [29]

and it diverges as “|t ≠ tr|≠1/2. The torsion thus develops
shock-like structures as displayed in Fig.4. The inset in Fig. 4
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Fig. 4. Plot of the torsion versus the y-coordinate, for different time steps using
“ = 0.01 , — = 1/2 and a = 1.

shows the linear behavior close to the reconnection point. It
is possible to prove analytically that the ratio of the slopes is
given by dT +

ds / dT ≠

ds

---
s=sr

= A+/A≠. The full formulas for the
torsion are too long to be presented here.

Lead author last name et al.

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

PNAS | November 18, 2016 | vol. XXX | no. XX | 3

DRAFT

The algorithm is based on a Newton–Raphson method to find
zeros of Â and on the knowledge of the pseudo-vorticity field
W = ÒRe[Â] ◊ ÒIm[Â], always tangent to the filaments, to
follow vortex lines [2]. Starting from a point x0 where the
density |Â|2 is below a given small threshold (therefore very
close to a vortex), we define the orthogonal plane to the vortex
line using W(x0). The plane is then spanned by the two
directors û1 and û2 as illustrated in Fig.1. A better approxi-

w

û1

û2
�x0

Fig. 1. Sketch of the plane on which the Newton–Raphson method is implemented.

mation for the vortex position xv on the plane is then given
by x1 = x0 + ”x. Here the increment ”x is obtained using the
Newton–Raphson formula (the linear approximation):

0 = Â(x0 + ”x) ¥ Â(x0) + J(x0)”x , [10]

where J(x0) is the Jacobian matrix expressed as

J =
3

ÒRe[Â] · û1 ÒRe[Â] · û2
ÒIm[Â] · û1 ÒIm[Â] · û2

4
. [11]

The increment can be therefore calculated using ”x =
≠J≠1(x0) · (Re[Â(x0)], Im[Â(x0)])T . Su�ciently close to the
line the Jacobian matrix is always a non-singular 2 ◊ 2 matrix
so its inverse can be computed. We underline that the method
requires the evaluation of the Jacobian Eq. (11) at intermesh
points. Making use of the spectral representation of Â, we
can precisely compute those values using Fourier transforms.
This process can be iterated until the exact location xv is
determined upon a selected convergence precision.

To track the following vortex point of the same line we
use as a next initial guess x0 = xv + ’W, which is obtained
evolving along W by a small step ’. The process is reiterated
until the entire line is tracked and closed, then repeated with
another line until the whole computation domain has been
fully explored.

Linear approximation detailed calculations

A first analytical study of a reconnection event in the GP
model have been provided by Nazarenko and West [3], where
it is shown that two vortices are anti-parallel during a recon-
nection and their distance scales as ”(t) ≥ t1/2. In the same
spirit of the work [3], we assume that inside the vortex core
the non-linear term of the GP equation can be neglected and
so a reconnection event should be governed by the (linear)
Schrödinger equation. For the sake of simplicity, in dimension-
less units this equations reads

iˆtÂ + 1
2Ò2Â = 0. [12]

Note that we absorbed the parameters c and › in Eq. (5)
by a suitable time and space rescaling. We remark that in
[3] reconnections are studied just on a plane, whereas here
we consider vortex filaments with non-zero torsion. At the
reconnection time tr we use as initial condition the ansatz

Âr(x, y, z) = z + “
a

(x2 + y2) + i(az + —x2 ≠ y2). [13]

Looking for Âr = 0 one can recover the vortex profile, given
by the curves

R(s) =
3

s, ±s

Ú
— ≠ “
“ + 1 , ≠s2 “(— + 1)

a(“ + 1)

4
, [14]

where s is the parametrization of the curve. We note that
Eq. (14) requires that

— ≠ “
“ + 1 > 0. [15]

In figure 2 we plot the the vortex filaments R(s) (blue lines) for
our initial condition. The vortices projected on the x-y planes
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Fig. 2. Plot of the initial condition using “ = 0.01, — = 1/2 and a = 1. The vortex
filaments are shown in blue while their projection on the x-y is shown in orange.The
arrows identify the circulation around each vortex.

form two hyperbola (orange lines) crossing at the reconnection
point. We note that the values — and “ fix the angle

„ = 2 tan≠1
3Ú

1 + “
— ≠ “

4
[16]

between the two hyperbola. The arrows identify the circulation
around each vortex.

The formal solution of equation Eq. (12) is given by

Â(t) = ei 1
2 (t≠tr)Ò2

Âr [17]

where tr is the time when the reconnection occurs. The choice
of a second order polynomial for Âr allows us to find the exact
solution of Eq. (12):

Â(t) = z+ “

a
(x2 +y2)≠2t(—≠1)+i

1
az + —x2 ≠ y2 + 4(t ≠ tr) “

a

2
.

[18]
Assuming a > 0 and “ < — < a2≠2“

a2 the vortex lines before
the reconnection (t < tr) are given by

R≠
1,2(s, t) =(s, ±

Ú
(tr ≠ t)(a2(1 ≠ —) ≠ 2“) + as2(— ≠ “)

a(“ + 1)
,

(t ≠ tr)(a2(— ≠ 1) ≠ 2“2) ≠ a“(— + 1)s2

(“ + 1)a2 )
[19]
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{torsion {curvature

A more general ansatz 

DRAFT

while after the reconnection (t > tr)

R+
1,2(s, t) =(±

Ú
(t ≠ tr)(a2(1 ≠ —) ≠ 2“) + as2(1 + “)

a(— ≠ “)
, s,

(t ≠ tr)(a2(— ≠ 1) + 2“2) ≠ a“(— + 1)s2

(— ≠ “)a2 ).
[20]

From the above curves we observe that the two vortices ap-
proach along the y-direction and separate along the x-direction.
It follows that

”±(t) = |R±
1 (0, t) ≠ R±

2 (0, t)| =
Ô

2fiA±|t ≠ tr|1/2, [21]

where the ratio of pre-factors satisfies

A+

A≠ =
Ú

1 + “
— ≠ “

> 1. [22]

From equation Eq. (16) we can see how the quantity A+

A≠ is
related to the angle „. Calling „≠ the angle of the approaching
vortices and „+ the angle of the separating vortices, we
can conclude that for — < a2≠2“

a2 then „≠ > „+. On the
other hand, when — > a2≠2“

a2 the two vortices approach
along the x-direction and separate along the y-direction with
A+

A≠ =
Ò

—≠“
1+“ . For sake of completeness in Fig.3 we show the

values of the ratio A+

A≠ and the angles „≠ and „+ for di�erent
values of —. We note that A+

A≠ < 1 for a2≠2“
a2 < — < 1 + 2“

while A+

A≠ > 1 for — > 1 + 2“. As a final remark, we note that

no solutions

A+

A� < 1
A+

A� > 1
A+

A� > 1

� =
a2 � 2�

a2
� = 1 + 2�� = �0

�� > �+�� < �+ �� < �+

Fig. 3. Dependence of the ratio A+
A≠ and the angles „≠ and „+ on different values

of —.

changing the sign of a corresponds to look at the reconnection
back in time, hence each value of A+

A≠ in Fig.3 will then be
reversed.

The linear approximation also allows for computing the
curvature

Ÿ(s, t) = |RÕ(s, t) ◊ RÕÕ(s, t)|
|RÕ(s, t)|3 [23]

and torsion

T (s, t) = (RÕ(s, t) ◊ RÕÕ(s, t)) · RÕÕÕ(s, t)
|RÕ(s, t) ◊ RÕÕ(s, t)|2 [24]

of the vortex lines.
The curvature can be directly evaluated. Its maxima as a

function of time before and after reconnection are given by

Ÿ≠
max(t)

Ú
4“2(1 + —)2(a2(— ≠ 1) + 2“)(t ≠ tr) + a3(— ≠ “)2(1 + “)

a2(1 + “)2(a2(— ≠ 1) + 2“)(t ≠ tr)
[25]

and

Ÿ+
max(t) =

Ú
4“2(1 + —)2(a2(— ≠ 1) + 2“)(t ≠ tr) ≠ a3(— ≠ “)2(1 + “)2

a2(— ≠ “)(a2(— ≠ 1) + 2“)(t ≠ tr)
[26]

respectively. The present calculation predicts Ÿ±
max(t) Ã

|t ≠ tr|≠1/2 that also corresponds to a dimensional analy-
sis prediction. In addition, the linear approximation pre-
dicts that Ÿ+

max/Ÿ≠
max = (A+/A≠)3 in the limit of t æ tr.

This non-trivial result can not be found by dimensional ar-
guments. Moreover one can show that Ÿ± presents a self-
similar behavior close to the reconnection point of the form
Ÿ±(s, t) = Ÿ±

max(t)�±(’±), where ’± = (s ≠ sr)Ÿ±
max(t) and sr

is the coordinate of the reconnecting point. For small values
of “, these self-similar functions can be found to be

�±(’) =
1 ± 3

2
(—±1+1)’2

1+(—±1+1)’2 “

(1 + (—±1 + 1)’2)3/2 + O(“2)

= 1
Ë
1 +

1!
Aû

A±

"2
+ 1

2
›2

È3/2 + O

3
÷±“2 (t ≠ tr)

·

4
,

[27]

where ÷± = (Aû/A±)2≠1. Remarkably, once the ratio A+/A≠

is reintroduced, “ only appears as quadratic correction to the
self-similar form. Note that within this approximation, self-
similarity is destroyed when ÷±“2(t ≠ tr)/· is of order 1.

We note that in case one chooses — > a2≠2“
a2 then A+

A≠ =Ò
—≠“
1+“ and

#
�±(’)

$
—> a2≠2“

a2
=

#
�û(’)

$
—< a2≠2“

a2
. [28]

The former calculations were evaluated using a symbolic com-
putation software.

Finally, the torsion T ±(s, t) of vortex line can be also com-
puted within this approximation. It vanishes at sr (suggesting
a locally planar reconnection), however it changes sign linearly
at this point. Its slope is given by

dT +

ds
= ≠“

3
Ô

2(1 + —)
a(— ≠ “)


(t ≠ tr)(a2(1 ≠ —) ≠ 2“)

, [29]

and it diverges as “|t ≠ tr|≠1/2. The torsion thus develops
shock-like structures as displayed in Fig.4. The inset in Fig. 4
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Fig. 4. Plot of the torsion versus the y-coordinate, for different time steps using
“ = 0.01 , — = 1/2 and a = 1.

shows the linear behavior close to the reconnection point. It
is possible to prove analytically that the ratio of the slopes is
given by dT +

ds / dT ≠

ds

---
s=sr

= A+/A≠. The full formulas for the
torsion are too long to be presented here.
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MATCHING THEORY TO CHARACTERIZE SOUND …

FIG. 6. A sketch of a reconnection process and matching asymptotics. When vortices are far apart their
dynamics if governed by the Biot-Savart equation, whereas when they are about to reconnect the process is
driven by the Schrödinger equation.

as illustrated in Figs. 7(a) and 7(b), respectively. Note that the assumption that the linear regime
description may be still valid at distances beyond the healing length ξ is justified by numerical
evidence [25].

A. The cylindrical region of integration

As detailed in the following, the calculations of the linear momentum and energy of the vortices
involve the integration over the full length of the filaments. As we are interested in their differences,
to simplify the problem we will consider only the segments of the filaments which lie inside the
cylinder of circle of radius R centered at the origin and having the cylindrical axis parallel to the

FIG. 7. Projections of the reconnecting filaments and the cylinder onto the plane z = 0 before the recon-
nection (a) and after the reconnection (b). Here the reconnection angle is φ+ = π/3.
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FIG. 4. (Color online) (a) Relative increase of compressible
kinetic energy (solid blue) and relative vortex length change
(dashed red) about a reconnection event (denoted by the red
dots) for a typical realization. The green area corresponds
to the interval defined by �

±(t)  �lin = 6⇠. (b) Relative
energy transferred to waves during the reconnection process.
The cyan zone denotes the allowed values from the matching
theory.

the theoretical estimation �L, rendered in cyan color in
Fig. 4(b), are bounded between two lines obtained setting
⇤ = 0 (dashed line) and |⇤| ! 1 (solid line). The GP
data are all distributed within these admissible values,
thus confirming the accuracy of the matching theory.

Remarkably, the estimation of Epulse explains in a
straightforward way the time asymmetry between the
rates of approach and separation reported in Fig. 2. In-
dependently on the value of the concavity parameter ⇤,
the energy of the sound pulse is only non-negative when
A+ � A�, meaning that unless energy is externally pro-
vided to the reconnecting vortices, it is energetically im-
possible to have a reconnection event where A+ < A�,
or equivalently, where �+ > ⇡/2.

Closing remarks. In this Letter we reported numer-
ical evidence of the irreversible dynamics of vortex re-
connections in a scalar quantum fluid, and explain its
origin thanks to a matching theory developed concur-
rently in [1]. Our results can be extended to more compli-
cated quantum fluids where non-local interactions and/or
higher order nonlinearities are included, like BECs with
dipolar interactions, cold Fermi gases, and superfluid liq-
uid 4He.

In quantum fluid experiments, the detailed study of
vortex reconnections is still in its infancy. In current
BECs made of dilute gases, reconnecting vortices are cre-
ated only in a non-reproducible way using fast temper-

ature quenches [26]; however new protocols have been
proposed to create vortices in a reproducible manner [27].
In such setups, once the reconnection plane is identified,
it should be feasible to measure the rates of approach
and separation and detecting directionality of the sound
pulse, using for instance Bragg spectroscopy [28]. In
superfluid liquid 4He experiments, vortex reconnections
have been detected so far only at relatively hight tem-
perature where the normal component is non-negligible
[29]. This latter may provide energy but also dissipate it
through mutual friction, hence measuring experimentally
the distribution of the rates of approach and separation
at di↵erent temperatures would be particularly desirable.
Finally, let us come back to the concept of irreversibil-

ity. In the realizations presented in this Letter, almost
all of the superfluid kinetic energy is initially stored in
the vortex-type excitations. This is likely to cause the
observed statistical asymmetry in the distribution of the
rates of approach and separation to be maximized. At
finite temperatures or in a turbulent tangle, fluctuations
can provide extra energy to reduce this asymmetry, per-
haps allowing also for �+ > ⇡/2, but the time-asymmetry
should in principle remains as an inherent mechanism al-
lowing the system to reach the equilibrium. From a fluid
dynamical point of view, let us to remark that vortex
reconnections are allowed and regular, in classical fluids,
due to the presence of viscosity, while in quantum fluids,
thanks to a dispersive term. Showing whether the result-
ing dynamics of these two di↵erent fluids are equivalent
or not, in the limit where their respective regularization
scale tends to zero, is an appealing open problem. Com-
paring the results presented in this Letter with a similar
study in Navier–Stokes or a carefully regularized Biot-
Savart model might provide some insights on the sponta-
neous stochasticity and the dissipative anomaly of turbu-
lent flows, two concepts closely related to irreversibility.
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FIG. 6. A sketch of a reconnection process and matching asymptotics. When vortices are far apart their
dynamics if governed by the Biot-Savart equation, whereas when they are about to reconnect the process is
driven by the Schrödinger equation.

as illustrated in Figs. 7(a) and 7(b), respectively. Note that the assumption that the linear regime
description may be still valid at distances beyond the healing length ξ is justified by numerical
evidence [25].

A. The cylindrical region of integration

As detailed in the following, the calculations of the linear momentum and energy of the vortices
involve the integration over the full length of the filaments. As we are interested in their differences,
to simplify the problem we will consider only the segments of the filaments which lie inside the
cylinder of circle of radius R centered at the origin and having the cylindrical axis parallel to the

FIG. 7. Projections of the reconnecting filaments and the cylinder onto the plane z = 0 before the recon-
nection (a) and after the reconnection (b). Here the reconnection angle is φ+ = π/3.
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Vortex reconnections are an irreversible process 
and vortices separate faster than they approach 

because is “cheaper”



QuantumVIW project
vortices per unit area in a plane perpendicular to =>⃗  is )∗ = 2=/*, the circulation around any 
contour embracing many vortex lines is the same as the one obtained with the solid body 
rotation. The Feynman’s rule simply follows, stating that @ ≡ 1 √)∗⁄ = C* 2⁄ =. The 
hexagonal lattice characterized by this length scale @ is pictured on Figure 1c, and the primary 
goal of our experiment is to verify the Feynman’s rule (or the quantum vortex density law in 
rotating 4He) that relates directly the rotation rate of the bucket to @ only through fundamental 
constants (*	 ≡ 	ℎ/.). 

 
The spinning cryostat 
The spinning cryostat that we designed (see Figure 1a) in order to observe this vortex lattice is 
called CryoLEM for Cryogenic Lagrangian Exploration Module37. The experimental volume 
has the shape of an elongated square cupola that allows for multiple optical axis orientations 
when aiming at its center. The heat losses on this entire volume are below 100 mW, thanks to 
the thermal shield cooled with liquid nitrogen equipped with KG3 windows38. The spinning 
table main components are two 1.2 m diameter rectified cast-iron plates of about one ton each, 
see Figure 1a. The first one is stable in the laboratory and the second one levitates on a 50 µm 
air cushion carrying the spinning cryostat, plus equipment (laser, cameras, sensors and 
electronics). We use a pressurized air bearing to reduce mechanical vibrations to their lowest 
limits. On the axis of the table, in the bottom part, one can find the drive belt and the electrical 
feedthrough and, on the top, we have designed in house a rotary pumping feedthrough in order 
to perpetually control the pressure in the experimental liquid helium reservoir (hence the fluid 

 
Figure 1 : Spinning cryostat and measurement scheme. 
Image a is a picture of the rotating cryostat, of which the rotary pumping feedthrough (1) is particularly visible as it is 
static in the laboratory reference frame. Diagram b represents a zoomed in slice of the final layer of the experimental cell. 
It consists of an elongated square cupola with multiple optical ports (2) at different angles. Those allow a laser sheet (3) 
to illuminate a vertical slice of the experimental volume. This laser sheet makes possible the lighting of solid particles of 
dihydrogen injected via an injection capillary (4) and the capture of their positions with a high-definition camera (S-CMOS 
with 6 µm pixel size) (5). In order to quell the large-scale flow that arises in the main reservoir and to inject the particles 
directly in the measurement volume, a 2x2x10 cm3 acrylic glass transparent channel (6) is fixed to the bottom of the 
experimental cell. Its base (7) also includes a surface heater for further experimentation of the counterflow regime. In the 
canonical case of constant rotation of the bucket, a vortex array forms inside the channel. Diagram c is further zoomed in 
in order to show the hexagonal array of quantum vortices (8). The white vertical cylinders are a representation of the vortex 
cores, for better readability, they are not to scale and are sliced horizontally. The experimental photograph (9) is an order 
of magnitude bigger than reality (here the experimental picture is approximately 1.4 mm wide, axis are equal, whilst 
the channel is 2 cm wide).  
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Figure 3: (a) Picture of solid dihydrogen particles decorating an array of quantum vortices in the CryoLEM experiment. The 
intervortex spacing # is the distance between two vertical lines. (b) Intervortex spacing measured by direct visualization 
represented as a function of the rotation rate $ of the He II bucket compared with Feynman’s rule (explicitly written on the 
figure, % being the theoretical quantum of circulation), without any adjustable parameter. (c) A quantum vortex ring (in green) 
creating normal fluid structures in its wake (in orange and blue) simulated by FOUCAULT [8]. 
 
Over the last ten years, the J.L. Lagrange and LEGI partners have produced state-of-the-art simulations 
of the NS, GP, NSVF and HVBK models using their homemade solvers [GKB23, MK20, MPK21, PK20]. 
Particularly relevant for this proposal, G. Krstulovic and collaborators have developed the FOUCAULT 
model, in which the superfluid component is described by the VF model, while the Navier–Stokes 
equations drive the normal fluid. The superfluid vortex lines and the normal fluid component are fully 
coupled in a self-consistent manner by the mutual friction force, which locally disturbs the normal fluid 
in the vicinity of the vortex lines. This unique model, developed in collaboration between G. Krstulovic 
and L. Galantucci (IAC-CNR, Rome), enables the understanding of how quantum vortices modify the 
normal fluid dynamics, as pictured in Fig. 3(c). This new description is based on the only possible 
theoretical approach to describe He II flows when the interaction between quantum vortices and the 
normal fluid drives the dynamics, as is the case in the CryoLEM experiment. 
 
In this project, we plan to use the FOUCAULT model to provide numerical and theoretical support for 
the experiments. In some asymptotic cases, we will use other models introduced above (GP, HVBK) to 
address specific questions. Such a multi-scale approach will help to understand the whole problem of 
normal fluid and quantum vortex interaction. Our experience and capabilities of producing state-of-
the-art simulations using the above-mentioned models will ensure the success of the project. 
 

c. Methodology and risk management 

The system that we consider in this project is a rotating bucket of He II. Inside this spinning He II bath, 
a channel (of length ) and cross section *, with √* < )) is open on the bath on one side and closed by 
a controlled surface heater on the other. To present our methodology and assess the associated risks, 
we first report in the left panel of Figure 4 a diagram recalling and illustrating the different regimes of 
the studied system as a function of its control parameters, the rotation rate Ω and the heat flux Q̇ that 
we apply at the bottom of the channel. The frontiers between these regimes are denoted by FAB and 
FBC. This “state diagram” is accompanied in the right panel of Figure 4 by the Gantt diagram of the 
project. The Gantt diagram summarizes the planning of the different work packages (WP0, WP1.1 …) 
which are described in detail in the following of this section. The color code used in the Gantt diagram 
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Summary

Kelvin wave cascade 
exists and is predicted by 
the wave turbulence theory

4.2. Irreversibility of vortex reconnections CHAPTER 4. QUANTUM VORTEX RECONNECTIONS

Remarkably, Yao and Hussain [YH20b] observed in Navier-Stokes simulations the t1/2 scaling with a
pre-factor of A�

⇠ 0.4. More impressive, is that they also observed A+ > A�, although the value of
A+ is di�cult to interpret, as in classical vortex reconnections, some circulation is lost. An emerging
obvious question is, what is the limit of infinite Reynolds number? Figure 4.5.a remind us the idea of
spontaneous stochasticity, a fundamental issue of turbulence (and other systems) [FGV01; ED15; TBM20].
Is something similar going on in this system?

To conclude this chapter and before going to the publications referenced previously, we present in
Fig. 4.6, visualisations of the reconnection process of a Hopf link in quantum and classical fluids (Navier-
Stokes and hyper-viscous Navier-Stokes). The emitted pulse in the quantum case, and the fluid structures
dissipated by viscosity and hyper-viscosity are clearly visible. We leave the reader to enjoy the beauty of
fluids and draw conclusions.

Figure 4.6: Left panel: vortex reconnections in superfluids. Visualisation of the density field produced
by numerical simulations of the GP model. Vortices are displayed in white as iso-contours of low density
values. Density waves are rendered in blue/red colours. Middle panel: vortex reconnections in clas-
sical fluids. Visualisation of the enstrophy field produced by numerical simulations of the Navier-Stokes
equation with Rev = �/⌫ = 2500. Right panel: Hyper-viscous simulation (with dissipation (�r

2)3)
to mimic high Reynolds numbers. Helical secondary structures develop after reconnection, probably to
compensate a loss of global helicity due to the unknotting of the link.
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