

Quantum turbulence: From the Kolmogorov cascade to sound emission, passing by Kelvin waves and vortex reconnections.

Giorgio Krstulovic

Laboratoire J-L Lagrange Université de la Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Nice, France

BRICASUP, Cargèse, July 2023

In collaboration with ...

University of East Anglia. Norwich, UK

Davide Proment

Alberto Villois (Now in Torino)

Umberto Giuriato Former PhD. Student

Nicolas Müller Former PhD. Student

Le calcul intensif au service de la connaissance

International Exchanges Cost Share Scheme

Landau-Tiszla description of superfluid helium

Two immiscible fluids: +superfluid of density ρ_s

Kapitsa, Allen and Misener, 1937

Superfluids

They have no viscosity !

Length scal

energy injection $\sim m$

Classical (Kolmogorov) turbulence

inter-vortex

SHREK (France)

Experiments: Maurer et al. (1998), Salort et al. (2010), Tang et al. (2021), ... Simulations in GP: Nore et al. (1997), Kobayashi et al. (2005), ... Simulations in vortex-filament method: Baggaley et al. (2012), ...

urbulence

coherence length

G. Bewley et al. Nature 2006.

sound emission

Quantum vortices

Density fluctuations

Müller, Krstulovic Phys. Rev. B 102, 134513 (2020)

Quantum vortices and turbulence

• At "zero-temperature", a superfluid has no viscosity Compressible fluid (and dispersive) Described by a complex order parameter (wave function) Quantum vortices (filaments) are naturally present in turbulent states

Numerical simulation of Gross-Pitaevskii (a.k.a NLS)

Phys. Rev. B 102, 134513 (2020)

Finite core-size Continuous circulation

Quantum vortices

Topological defects Quantised circulation

 $\xi \sim \stackrel{\circ}{\mathrm{A}}$ (⁴He) $\xi \sim \mu m$ (BEC)

vortex core $\rightarrow 0$

Multi-scale physics

Scales

Classical fluid (Navier-Stokes)

Modeling superfluid helium Multi-scale physics

Scales

Classical fluid (Navier-Stokes)

Multi-scale physics

Scales

The Gross-Pitaevskii equation Modelling low-temperature superfluids

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + g |\psi|^2 \psi, \quad g = \frac{4\pi a \hbar^2}{m}$$

Linearising about a flat state:

Bogoliubov dispersion relation:

$$\omega(k) = c k \sqrt{1 + \frac{1}{2}\xi^2 k^2}$$

Speed of sound Coherence length

$$\psi = A_0 e^{-i\frac{\mu}{\hbar}t} + \delta\psi$$

$$\omega(k) = \sqrt{\frac{g|A_0|^2}{m}k^2 + \frac{\hbar^2}{4m^2}k^4}.$$

$$c = \sqrt{g|A_0|^2/m}$$
$$\xi = \sqrt{\hbar^2/2m|A_0|^2g}$$

Hydrodynamics?

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + g|\psi|^2\psi,$$

Madelung transformation

$$\psi(\mathbf{x},t) = \sqrt{\frac{\rho(\mathbf{x},t)}{m}} \exp\left[i\frac{m}{\hbar}\phi(\mathbf{x},t)\right] = \sqrt{\frac{\rho(\mathbf{x},t)}{m}} \exp\left[i\frac{\phi(\mathbf{x},t)}{\sqrt{2}c\xi}\right]$$

density of particles

 $\rho = |\psi|^2$

Speed of sound $c = \sqrt{g|A_0|^2/m}$ Coherence length $\xi = \sqrt{\hbar^2/2m|A_0|^2g}$

$$\begin{split} &\frac{\partial\rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \, \boldsymbol{\nabla} \, \boldsymbol{\phi}) = 0, \\ &\frac{\partial\phi}{\partial t} + \frac{1}{2} (\boldsymbol{\nabla}\phi)^2 = c^2 (1-\rho) + c^2 \xi^2 \frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}. \end{split}$$

 $\mathbf{v} = \nabla \phi$ is a potential flow

$\mathbf{v} = \nabla \phi$ is a potential flow but: Vortices are topological defects: $\psi(\mathbf{x}) = \mathbf{0}$

$$\Gamma = n \frac{h}{m} = n 2\pi \sqrt{2} c \xi, \quad \mathbf{w}$$

Points in 2D and lines in 3D

$$\mathbf{v} \sim \frac{1}{r} \Rightarrow \nabla \times \mathbf{v} \sim \delta($$

 $\mathbf{w}(\mathbf{x}) = \nabla \times \mathbf{v} = \frac{h}{m} \oint \delta(\mathbf{x} - \mathbf{s}(\ell)) \frac{\mathrm{d}\mathbf{s}(\ell)}{\mathrm{d}\ell} \mathrm{d}\ell$

Quantum vortices

$\mathbf{v} = \nabla \phi$ is a potential flow but: Vortices are topological defects: $\psi(\mathbf{x}) = \mathbf{0}$

Quantum vortices

 $\Gamma = \oint \nabla \phi \cdot d\ell = \phi^+ - \phi^-$

 $rac{m}{\hbar}\phi$

Vortex filament method **At** T = 0

 $\mathbf{v} \sim rac{\mathbf{l}}{r} \Rightarrow
abla imes \mathbf{v} \sim \delta(\mathbf{r})$ Vorticity field $\omega_{s}(\mathbf{x}) = \Gamma \oint_{\infty} \delta(\mathbf{x} - \mathbf{s}(\zeta)) \frac{d\mathbf{R}}{d\zeta} d\zeta$ Velocity field $\mathbf{v}_{s}(\mathbf{x}) = -\frac{1}{4\pi} \int \frac{(\mathbf{x} - \mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{3}} \times \omega(\mathbf{y}) d^{3}\mathbf{y} = -\frac{\Gamma}{4\pi} \oint_{\mathscr{C}} \frac{\mathbf{x} - \mathbf{s}(\zeta)}{|\mathbf{x} - \mathbf{s}(\zeta)|^{3}} \times \frac{d\mathbf{R}}{d\zeta} d\zeta$

Schwarz vortex filament method

$$\frac{d\mathbf{R}(\zeta, \mathbf{t})}{dt} = \mathbf{v}_{s}(\mathbf{R}(t))$$

 $(\zeta, t))$

- **Regularisation of Biot-Savart**
- Ad-hoc reconnection rule
- Ad-hoc small-scale dissipation

Length scal

energy injection $\sim m$

Classical (Kolmogorov) turbulence

 $\sim 10^{-5} m$

•••••

Injection of energy e

Flux of energy ε

l

GP and Navier-Stokes turbulence equivalence in 2D and 3D (intermittency)

See J.I. Polanco and SHRE N. P. Müller talks next week

Experiments: Maurer et al. (1998), Salort et al. (2010), Tang et al. (2021), ... Simulations in GP: Nore et al. (1997), Kobayashi et al. (2005), ... Simulations in vortex-filament method: Baggaley et al. (2012), ...

G. Bewley et al. Nature 2006.

Kelvin waves

XXIV. Vibrations of a Columnar Vortex. By Sir WILLIAM THOMSON*.

THIS is a case of fluid-motion, in which the stream-lines are approximately circles, with their centres in one line (the axis of the vortex) and the velocities approximately con-stant, and approximately equal at equal distances from the axis. As a preliminary to treating it, it is convenient to ex-

$$\mathbf{v}_0(r,\theta,z) = \frac{\alpha(r)}{r}\hat{\theta} \quad \text{and} \quad p(r,\theta,z) = p_0(r) = \rho_0 \int_{a_0}^r \frac{\alpha(s)^2}{s^3} \mathrm{d}s.$$
$$\Gamma = \oint_{\mathcal{C}} \mathbf{v} \cdot \mathrm{d}\ell = 2\pi\alpha(r)$$

Kelvin Wave

Sir William Thomson (1880) XXIV. Philosophical Magazine Series 5, 10:61, 155-168,

Take the incompressible Euler's equations

$$\mathbf{es:} \quad \mathbf{v} = \mathbf{v}_0 + \delta \mathbf{v} + \dots$$

 \hat{z}

n = 1 and $ka_0 \ll 1$

Kelvin waves

 $\omega_n^{\pm}(k) = \frac{\Gamma}{2\pi a_0^2} \left(n \pm \sqrt{n + \frac{a_0 |k| K_{n-1}(a_0 |k|)}{K_n(a_0 |k|)}} \right)$

 $\omega^{-}(k) = \left(-\frac{\Gamma}{8\pi}k^{2}\right)\log\frac{1}{a_{0}|k|} + b\right), \text{ with } b = \log 2 - \gamma_{\mathrm{E}}$

Vortex excitations in superfluids (GP)

P.H. Roberts. Proc. Royal Society of London A:(2003)

Small scales

U. Giuriato, G. Krstulovic and S. Nazarenko. Phys. Rev. Research (2020)

Constant arclength

 $\zeta(z) \sim z$

Complex variables

$$\dot{\mathbf{s}}(\zeta,t) = \frac{\Gamma}{4\pi R} \Lambda \mathbf{b}(\zeta,t)$$
 istant

Constant arclength
$$\dot{s}(z,t) = i \frac{\Gamma}{4\pi} \Lambda \frac{\partial^2}{\partial z^2} s(z,t)$$

Complex variables

Small amplitudes Kelvin waves $=\frac{1}{4\pi \Re z,t}(\underline{\zeta},\underline{t})(\underline{\zeta},t)+iY(z,t)$

Kelvin-wave cascade Vortex filament model

Biot-Savart description of a perturbed straight vortex

$$H_{\rm NL} = \sum_{k} \omega_{k}$$
$$\omega_{k} = -\frac{\Gamma}{4\pi}$$

[Sonin 87 - Svistunov 95]

$$= \frac{\Gamma^2}{4\pi} \int \frac{1 + \mathcal{R}e[s'^*(z_1)s'(z_2)]}{\sqrt{(z_1 - z_2)^2 + |s(z_1) - s(z_2)|^2}} \mathrm{d}z_1 \mathrm{d}z_2$$

$|s_k|^2 + H_4 + H_6 + \dots$

 $-k^2(\log{(k\ell)} - \Lambda)$

Vortex motion and Kelvin wave cascade

Kelvin waves

- Helicoidal displacement of vortex filament

$$n_k = |s_k|^2$$

 $E(k) = \omega_k n_k \propto \epsilon^{\alpha} k^{-\gamma}$

 k_3

Wave turbulence predictions

 $3 \longrightarrow 3$

Kozik-Svistunov (2004) : (6 waves)

$$E_{\rm KS}(k) = C_{\rm KS} \frac{\Lambda \kappa^{7/5} \epsilon^{1/5}}{k^{7/5}}$$
$$\Lambda = \ln(\ell/a)$$

a (wave-turbulence) controversy!!

Vinen et al.: (PRL 2003, J. Phys.: Condens. Matt. 2005)

$$_{k}|^{2}+H_{4}+H_{6}+\ldots$$
 non-resonant

L'vov-Nazarenko (2010): (effective 4 wave theory)

$$E_{\rm LN}(k) = C_{\rm LN} \frac{\Lambda \kappa \epsilon^{1/3}}{\Psi^{2/3} k^{5/3}}, \quad \Psi \equiv \frac{8 \pi E}{\Lambda \kappa^2}$$
$$C_{\rm LN} = 0.304$$

Kivotides, Vassilicos, Samuel, Barenghi PRL 2001
E. Kozik & B. Svistunov. PRL 2004
L'vov & Nazarenko JETP 2010
Boué et al PRB 2011
Laurie and Baggaley PRE 2014
many others works....

 $E_{\rm C.B.}(k) \sim k^{-1}$

Kelvin-wave cascade Numerical simulations

We consider a perturbed straight vortex:

Biot-Savart dynamics:

$$i\Gamma\dot{s}(z) = \frac{\delta H_{\mathrm{NL}}}{\delta s^*(z)}, \qquad H_{\mathrm{NL}} = \frac{\Gamma^2}{4\pi} \int \frac{1 + \mathcal{R}e[s'^*(z_1)s'(z_2)]}{\sqrt{(z_1 - z_2)^2 + |s(z_1) - s(z_2)|^2}} \mathrm{d}z_1 \mathrm{d}z_2$$
$$\dot{\mathbf{s}}(\zeta) = \frac{\Gamma}{4\pi} \oint \frac{\mathrm{d}\mathbf{s}(\zeta') \times (\mathbf{s}(\zeta) - \mathbf{s}(\zeta'))}{|\mathbf{s}(\zeta) - s(\zeta'|^3)}$$

$$\Gamma \dot{s}(z) = \frac{\delta H_{\mathrm{NL}}}{\delta s^*(z)}, \qquad H_{\mathrm{NL}} = \frac{\Gamma^2}{4\pi} \int \frac{1 + \mathcal{R}e[s'^*(z_1)s'(z_2)]}{\sqrt{(z_1 - z_2)^2 + |s(z_1) - s(z_2)|^2}} \mathrm{d}z_1 \mathrm{d}z_2$$
$$\dot{\mathbf{s}}(\zeta) = \frac{\Gamma}{4\pi} \oint \frac{\mathrm{d}\mathbf{s}(\zeta') \times (\mathbf{s}(\zeta) - \mathbf{s}(\zeta'))}{|\mathbf{s}(\zeta) - s(\zeta'|^3)}$$

3D PDE but everything is regular. Effective dissipation is provided by acoustic emission.

Non-local equation, needs to be regularised, dissipation is added in an ad-hoc manner

$$= -\frac{\hbar^2}{2m} \nabla^2 \psi + g |\psi|^2 \psi,$$

One gets $\psi(x, y, z, t)$ but we need a filament s(z, t)!

Tracking vortices

 $\psi(x, y, z, t) = 0$

Newton_method Fourier interpolation

G. Krstulovic PRE 86, 055301(R), (2012)

Isosurface

- Highly accurate (spectral precision)
- Geometry independent
- Arbitrary number of objects

A.Villois, G. Krstulovic, D. Proment and H. Salman. J. Phys. A (2016)

Superfluid turbulence

Is the Kelvin wave cascade relevant for a turbulent tangle?

Classical (Kolmogorov) turbulence inter-vortex distance & vortex core size size sound emission

Quantum turbulence Kelvin waves in a turbulent tangle

H. Salman. J. Phys. A (2016)

A.Villois, D. Proment and G. Krstulovic. PRE 2016

Quantum turbulence Kelvin wave cascade

Take away message

QT is the result of the collective effect of many vortex lines each of them inducing a weak wave turbulent cascade, the whole leading to Kolmogorov turbulence.

 $n_k = |\hat{\mathbf{R}}_{\mathrm{KW}}(k)|^2$

Quantum turbulence

29

Strong turbulence

Kolmogorov scaling for the energy spectrum (K41)

 $E(k) = C_{\rm K} \epsilon^{2/3} k^{-5/3}$ $k_0 \ll k \ll k_{\ell}$

Weak wave turbulence

Kelvin wave scaling for the energy spectrum

 $E(k) \sim \kappa \epsilon^{1/3} \ell^{-4/3} k^{-5/3} k^$

Experiments: Maurer et al. (1998), Salort et al. (2010), Tang et al. (2021), ... Simulations in GP: Nore et al. (1997), Kobayashi et al. (2005), Clark di Leoni et al. (2017), ... Simulations in vortex-filament method: Baggaley et al. (2012), ...

Müller & Krstulovic - PRB (2020)

Quantum turbulence

Initial condition		Turbulence			
k_0	L/ξ	ϵ	ℓ/L		
 2	341	0.01	0.412		Loc
2	171	0.01	0.494		
2	341	0.01	0.255		
3	341	0.02	0.235		Roto
4	341	0.03	0.227		
2	683	0.01	0.139]]	

$$E(k) = C_K \epsilon^{2/3} k^{-5/3}$$

Kolmogorov spectrum

 $E_{\rm KW}(k) = C_{\rm LN}^{3/5} \frac{\kappa \Lambda \epsilon^{1/3} \ell^{-4/3}}{\tilde{\Psi}^{2/3} k^{5/3}}$

Kelvin wave spectrum

 k/k_ℓ

Vortex reconnections

Experiments in water

Numerical simulations of classical fluids

Kleckner & Irvine. Nature Phys. 2013

Navier-Stokes equations

Ideal for a theoretical description! $\xi \ll R$

Numerical simulations of superfluids

Gross-Pitaevskii model

Minimal vortex distance

R: system size between vortices

$$\delta^{\pm}(t) = A^{\pm} |\Gamma(t - t_r)|^{1/2}$$

Minimal vortex distance

R: system size

Minimal vortex distance

R: system size between vortices

$$\delta^{\pm}(t) = A^{\pm} |\Gamma(t - t_r)|^1$$

Previous works reported different exponents:

Zuccher et al Phys Fluids (2013) Allen et al. PRA (2014) Rorai et al. JFM (2016)

Quantum vortex filaments

A.Villois, GK and D. Proment Phys. Rev. Fluids 2, 044701 (2017)

A.Villois, GK and D. Proment Phys. Rev. Fluids 2, 044701 (2017)

QUANTUM VORTEX RECONNECTIONS Sound emission and irreversibility

Quantum vortex reconnections. Irreversibility and sound emission. Krstulovic & Proment YouTube video : https://youtu.be/OhKUOV5irGI

Numerical measurements

Vortex separate faster than they approach

Energy is sent away irreversibly

Matching theory

Analytical theory based on conservation of momentum and energy

Proment and Krstulovic PRFluids 5,704701 (2020)

A more general ansatz

time

Proment and Krstulovic PRFluids 5,704701 (2020)

Numerical measurements

Matching theory

Proment and Krstulovic PRFluids 5,704701 (2020)

QuantumVIW project

Cryolem Mathieu Gibert Institut Néel (Grenoble)

matière diluée

a

48 months

550 k€

Charles Peretti talk

Kelvin waves

Kelvin wave cascade exists and is predicted by the wave turbulence theory

Vortex reconnections

Superfluids Hyper-viscous fluids Classical fluids

