Time arrow in reconnecting dynamics of vortices

Michikazu Kobayashi (Kochi University of Technology) Collaborator: Shuta Sakamoto Hitomi Endo

School of Engineering Science, Kochi University of Technology

Jul. 5, 2023 : Summer School in Cargése, "Bridging Classical and Quantum Turbulence"

Contents

- Quantum fluid and quantized vortices
- Vortex dynamics in Gross-Pitaevskii equation
- Vortex reconnection
- Phase twist and reconnection Mathematical structure for phase twist
- Phase twist in equilibrium
- Summary

Table of Contents

Quantum fluid and quantized vortices

Vortex dynamics in Gross-Pitaevskii equation

Vortex reconnection

Phase twist and reconnection Mathematical structure for phase twist

Phase twist in equilibrium

Summary

Quantum fluid : Hydrodynamic systems dominated by quantum effect and statistics

Superfluidity : Inviscid flows in macroscopic scales

Atomic BEC

Superconductors

Rotational flows are carried by quantized vortices

$$\kappa = \oint d\boldsymbol{\ell} \cdot \boldsymbol{v} = h/m$$

- Quantization of circulation (κ)
- Topological defects
- Very thin cores
 - \sim Å : ${}^{4}\text{He}$
 - ~ 10 nm : $^{3}{\rm He}$
 - \sim 100 nm : Atomic BEC

Visualization in superfluid helium

Youtube video by groups in University of Maryland

Entry #: 84206

Visualization of **Kelvin waves** on quantum vortices

Enrico Fonda^{1,2,3}, David P. Meichle¹, Nicholas T. Ouellette⁴, Sahand Hormoz⁵, Katepalli R. Sreenivasan³, Daniel P. Lathrop¹

¹University of Maryland, ²Università di Trieste, ³New York University, ⁴Yale University, ⁵University of California - Santa Barbara

Quantum fluid and quantized vortices

Vortex dynamics in Gross-Pitaevskii equation

Vortex reconnection

Phase twist and reconnection Mathematical structure for phase twist

Phase twist in equilibrium

Summary

Superfluidity is triggered by long-range order in Bose-Einstein condensation \Rightarrow Complex order parameter ψ

------ Superfluid density ho and superfluid velocity $m{v}$ ----- $\psi = |\psi| \exp(i \operatorname{Arg}[\psi])$ $ho = |\psi|^2$ $m{v} = \frac{\hbar}{m} \nabla \operatorname{Arg}[\psi]$ Quantized vortices

Vortices as topological defects

Gross-Pitaevskii equation

$$Many-body Schrödinger equation$$
$$i\hbar\Psi = \left[-\sum_{i=1}^{N} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{N_B=2}^{N} \frac{1}{N_B!} \sum_{i_1 \neq \dots \neq i_{N_B}} V^{(N_B)}(\mathbf{x}_{i_1}, \dots \mathbf{x}_{i_{N_B}})\right] \Psi$$

- Mean-field approximation -
$$\Psi(\mathbf{x}_1, \cdots, \mathbf{x}_N) \approx \prod_{i=1}^N \psi(\mathbf{x}_i)$$

Local interaction approximation
$$V^{(N_B)}(\mathbf{x}_{i_1}, \cdots \mathbf{x}_{i_{N_B}}) = g^{(N_B)} \prod_{i_a \neq i_b} \delta(\mathbf{x}_{i_a} - \mathbf{x}_{i_b})$$

Gross-Pitaevskii equation : hydrodynamic equation for ψ –

$$i\hbar\dot{\psi} = \left\{-\frac{\hbar^2}{2m}\nabla^2 + V(|\psi|^2)\right\}\psi$$

Gross-Pitaevskii equation

Gross-Pitaevskii equation : hydrodynamic equation for ψ -

$$i\hbar\dot{\psi} = \left\{-\frac{\hbar^2}{2m}\nabla^2 + V(|\psi|^2)\right\}\psi$$

Hydrodynamic form (Quantum Euler equation)

$$E_{GP} = \int d\mathbf{x} \left\{ \frac{\rho \mathbf{v}^2}{2} + \frac{\hbar^2}{2m} (\nabla \sqrt{\rho})^2 + U(\rho) \right\} \qquad U = \int d\rho \, V : \text{Internal energy}$$

$$\dot{\rho} + \nabla \cdot (\rho \mathbf{v}) = 0 \qquad \dot{\mathbf{v}} + \frac{1}{2} \nabla \mathbf{v}^2 = -\frac{1}{m} \frac{\nabla \rho}{\rho} + \frac{\hbar^2}{2m} \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} \right)$$

$$\frac{\nabla \rho}{\rho} = \frac{\partial \nabla U}{\partial \rho} : \text{Classical pressure} \qquad \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} \right) : \text{Quantum pressure}$$

Vortex dynamics described by Gross-Pitaevskii equation

Vortex nucleation behind obstacle \Rightarrow dissipation K. Sasaki et. al., PRL **104** 150404 (2010)

(a) $\tilde{v} = 2.4$, d / $\xi = 0.04$ (b) $\tilde{v} = 2.6$, d / $\xi = 0.05$ (c) $\tilde{v} = 3.0$, d / $\xi = 0.05$

$$i\hbar\dot{\psi} = \left\{-\frac{\hbar^2}{2m}\nabla^2 + g|\psi|^2 + V_{\text{obstacle}}(\mathbf{x})\right\}\psi \qquad \psi(\mathbf{x})|_{t=0} = \sqrt{\rho}e^{imvx/t}$$

Quantum fluid and quantized vortices

Vortex dynamics in Gross-Pitaevskii equation

Vortex reconnection

Phase twist and reconnection Mathematical structure for phase twist

Phase twist in equilibrium

Summary

Vortex reconnection

- Two vortices approach to each other
- Reconnect at local antiparallel point
 - : Topological change of structure
- Excitation of spiral Kelvin waves

Vortex reconnection

- Two vortices approach to each other
- Reconnect at local antiparallel point
 - : Topological change of structure
- Excitation of spiral Kelvin waves

Time-reversal symmetry of Gross-Pitaevskii equation

$$i\dot{\psi} = \left\{-\frac{\hbar^2}{2m}\nabla^2 + V(|\psi|^2)\right\}\psi$$
$$\downarrow t \to -t \quad \psi \to \psi^*$$
$$i\dot{\psi}^* = \left\{-\frac{\hbar^2}{2m}\nabla^2 + V(|\psi|^2)\right\}\psi^*$$

 ψ and ψ^* evolve along opposite time direction

Inverse reconnection of vortices

- Time reversal Gross-Pitaesvkii equation $i\dot{\psi} = \left\{-\frac{\hbar^2}{2m} + V(|\psi|^2)\right\}\psi$ $\Downarrow t \to -t \quad \psi \to \psi^*$ $i\dot{\psi}^* = \left\{-\frac{\hbar^2}{2m} + V(|\psi|^2)\right\}\psi^*$

Inverse reconnetion of vortices

- Time reversal Gross-Pitaesvkii equation $i\dot{\psi} = \left\{-\frac{\hbar^2}{2m} + V(|\psi|^2)\right\}\psi$ $\Downarrow t \to -t \quad \psi \to \psi^*$ $i\dot{\psi}^* = \left\{-\frac{\hbar^2}{2m} + V(|\psi|^2)\right\}\psi^*$

Time reversal symmetry allows both directions of reconnection

Forward reconnection

Backward reconnection

Difference between "forward" and "backward" reconnections

Adding white noise at
$$t=0$$
 : $\psi(t=0)
ightarrow \psi(t=0)+\xi$

Difference between "forward" and "backward" reconnections

Adding white noise at
$$t=0$$
 : $\psi(t=0)
ightarrow \psi(t=0)+\xi$

Probability of reconnection

 $\psi(\mathbf{x}, t=0) \rightarrow \psi(\mathbf{x}, t=0) + \xi \qquad \langle \xi \rangle = 0 \qquad \langle \xi^*(\mathbf{x}_1)\xi(\mathbf{x}_2) \rangle = a(\Delta x)^3 |\psi_{\infty}|^2 \delta(\mathbf{x}_1 - \mathbf{x}_2)$

- Forward reconnection always occurs.
- Backward reconnection does not occur with small noise intensity *a*.
- Reconnection probability exponentially decays with *a*.

Intuitive properties of forward and backward reconnections

Reconnection type	Kelvin waves	Noisy initial condition
Forward	Emission	Robust
Backward	Absorption	Weak

Vortex reconnection has "'time arrow"

Phase structure around vortex core

Backward reconnection

Phase twist along vortex core

Less phase twist (Kelvin waves instead) Quantum fluid and quantized vortices

Vortex dynamics in Gross-Pitaevskii equation

Vortex reconnection

Phase twist and reconnection Mathematical structure for phase twist

Phase twist in equilibrium

Summary

Phase twist along vortex core

Correspondence in classical fluid

Corkscrew-like flow

Phase twist is a part of centerline helicity

Centerline helicity
$$H = \int d\mathbf{x} \, \mathbf{v}_{\parallel} \cdot (\nabla \times \mathbf{v}_{\perp})$$

Centerline helicity = Phase twist + Torsion of vortex

All vortices have forms of closed loops

A simple ring cannot have the phase twist

Phase twist in bulk : knot and link

All vortices have forms of closed loops

Link (2 – 2 torus knot) \Rightarrow Phase twist 4 π

Knot (2 – 3 torus knot) \Rightarrow Phase twist 6 π

Link (2 - 2 torus knot)

Knot (2 - 3 torus knot)

Links and knots having nonzero phase twist always reconnect

Link (2 - 2 torus knot)

Knot (2 - 3 torus knot)

Links and knots having nonzero phase twist always reconnect

Phase twist in bulk : writhe

Writhe (2 - 1 torus knot)

Writhing number $0 \Rightarrow$ zero phase twist Writhing number $1 \Rightarrow$ nonzero phase twist

Solid angle for vortex crossing $< 2\pi \Rightarrow$ phase twist 0 Solid angle for vortex crossing $> 2\pi \Rightarrow$ phase twist 2π Ratio between major radius *R* and minor radius *r* of torus :

 $R/r < 2 \Rightarrow$ phase twist 0 $R/r > 2 \Rightarrow$ phase twist 2π

Phase twist 0

Phase twist 2π

Phase twist 0

Phase twist 1

Reconnection time of writhe

Initial condition having zero phase twist does not reconnect

Time reversal dynamics (Adding noise)

Time reversal dynamics (Adding noise)

Outline

Quantum fluid and quantized vortices

Vortex dynamics in Gross-Pitaevskii equation

Vortex reconnection

Phase twist and reconnection Mathematical structure for phase twist

Phase twist in equilibrium

Summary

Centerline helicity : $H = \int d\mathbf{x} \, \mathbf{v}_{\parallel} \cdot (\nabla \times \mathbf{v}_{\perp}) = \text{Phase twist} + \text{Vortex torsion}$

Rewriting by the integral along vortex line (Euler's integral) $H = \frac{\kappa^2}{4\pi} \sum_{i,j:\text{closed loop}} \oint_{C_i} \oint_{C_j} \frac{(\mathbf{x}_i - \mathbf{x}_j) \cdot (d\mathbf{x}_i \times d\mathbf{x}_j)}{|\mathbf{x}_i - \mathbf{x}_j|^2} = H_{i=j} + H_{i\neq j}$ $H_{i\neq j} = \kappa^2 N_{\text{link}} \Rightarrow \text{Linking number}$ $H_{i=j} = \kappa^2 (N_{\text{knot}} + N_{\text{writhe}} + T_{\text{torsion}}) \Rightarrow \text{Knot+Writhe+Torsion}$ $N_{\text{writhe,link,knot}} \in \mathbb{Z} \qquad T_{\text{torsion}} \in \mathbb{R}$

Reconnection : interchange between $N_{\text{writhe,link,knot}}$ and T_{torsion}

Centerline helicity of torus knot

Writhe
Writhe
Link
Knot

$$a_{i,j:closed loop} \oint_{C_i} \oint_{C_j} \frac{(x_i - x_j) \cdot (dx_i \times dx_j)}{|x_i - x_j|^2} = H_{i=j} + H_{i \neq j}$$

 $a_{i,j:closed loop} \oint_{C_i} \oint_{C_j} \frac{(x_i - x_j) \cdot (dx_i \times dx_j)}{|x_i - x_j|^2} = H_{i=j} + H_{i \neq j}$
 $a_{i,j:closed loop} \int_{C_i} \oint_{C_j} \frac{(x_i - x_j) \cdot (dx_i \times dx_j)}{|x_i - x_j|^2} = H_{i=j} + H_{i \neq j}$
 $a_{i,j:closed loop} \int_{C_i} \int_{C_j} \frac{(x_i - x_j) \cdot (dx_i \times dx_j)}{|x_i - x_j|^2} = H_{i=j} + H_{i \neq j}$
 $a_{i,j:closed loop} \int_{C_i} \int_{C_j} \frac{(x_i - x_j) \cdot (dx_i \times dx_j)}{|x_i - x_j|^2} = H_{i=j} + H_{i \neq j}$
 $a_{i,j:closed loop} \int_{C_i} \int_{C_j} \frac{(x_i - x_j) \cdot (dx_i \times dx_j)}{|x_i - x_j|^2} = H_{i=j} + H_{i \neq j}$
 $a_{i,j:closed loop} \int_{C_i} \int_{C_j} \frac{(x_i - x_j) \cdot (dx_i \times dx_j)}{|x_i - x_j|^2} = H_{i=j} + H_{i \neq j}$

Note : Centerline helicity does not conserve in GP equation

Quantum pressure breaks the conservation law.

Quantum fluid and quantized vortices

Vortex dynamics in Gross-Pitaevskii equation

Vortex reconnection

Phase twist and reconnection Mathematical structure for phase twist

Phase twist in equilibrium

Summary

Reconnection has time arrow in the time-reversal dynamics \Rightarrow Nature likes vortex torsion (Kelvin-waves) rather than phase twist.

Phase twist descreases in "normal" dynamics \Rightarrow Similar to entropy

Phase twist in equilibrium

Does equilibrium have phase twist?

Stochastic Gross-Pitaevskii equation : model for superfluid at finite temperatures

MK and L. F. Cugliandolo, PRE 94, 062146 (2016)

Observable
$$F[\psi]$$

 $\langle F \rangle = \frac{\int D\psi \, D\psi^* \, F e^{-\beta E_{\text{GP}}}}{\int D\psi \, D\psi^* \, e^{-\beta E_{\text{GP}}}} \qquad E_{\text{GP}} = \int d\mathbf{x} \, \left\{ \frac{\hbar^2}{2m} |\nabla \psi|^2 + U(|\psi|^2) \right\}$

Stochastic Gross-Pitaevskii equation $(i\hbar - \gamma)\dot{\psi} = \left\{-\frac{\hbar^2}{2m}\nabla^2 - \mu + V(|\psi|^2)\right\}\psi + \xi_1 + i\xi_2$ $\langle\xi_i(\mathbf{x}, t)\xi_j(\mathbf{x}', t')\rangle = \gamma T \delta(\mathbf{x} - \mathbf{x}')\delta(t - t')\delta_{ij} \qquad \langle F \rangle = \lim_{t \to \infty} \frac{1}{t} \int_0^t dt F$

Observable for physical quantities

Stochastic GP equation can describe equilibrium state including phase transition for Bose-Einstein condensation

Observable for vortex quantities

Observable for vortex quantities

Phase twist T_w , number of vortex loops N_v and entropy

 $-\left(\frac{T_w}{N_v}\right)\log\frac{T_w}{N_v}$ behaves like thermodynamic entropy

Quantum fluid and quantized vortices

Vortex dynamics in Gross-Pitaevskii equation

Vortex reconnection

Phase twist and reconnection Mathematical structure for phase twist

Phase twist in equilibrium

Summary

- Vortex reconnection has "time arrow" in time-reversal dynamics
- Direction of time arrow is determined by phase twist along vortex line
- Phase twist tends to decrease in vortex reconnections
- Phase twist behaves like entropy in equilibrium
 ⇒ Phase twist can be expected to give "nonequilibrium entropy"
- What is the relation of phase twist to the fluctuation theorem? $\frac{P(\Delta S/\tau = A)}{P(\Delta S^{\dagger}/\tau = -A)} = e^{A\tau}$