Dark Solitons: From 1D to 2D and 3D with Some Quantum Touches

### Turbulence Summer School, Cargese, July 4, 2023

### P.G. Kevrekidis

### University of Massachusetts

# In Collaboration With:

- D.J. Frantzeskakis (Athens), R. Carretero (SDSU)
- W. Wang, E. Charalampidis (Amherst), J. D'Ambroise (SUNY OW)
- P. Schmelcher, L. Katsimiga, S. Mistakidis, G. Koutentakis (Hamburg)
- P. Engels, A. Khamechi, T. Bersano, V. Gokhroo (Washington State)
- R. Bisset, C. Ticknor, L. Collins (LANL), V. Ruban (Moscow)

# with the gratefully acknowledged partial support of:

- US-NSF (DMS and PHY); Stavros Niarchos Foundation.
- Alexander von Humboldt Foundation; QNRF (Qatar).

# References

- PRL 118, 244101 (2017);
- PRA 97, 063604 (2018);
- PRL **120**, 063202 (2018);
- NJP **19**, 073004 (2017);
- NJP **19**, 123012 (2017);
- PRR 2, 033376 (2020);
- PRA **104**, 023314 (2021);
- PRA 103, 023301 (2021);
- arXiv:2208.10585;
- arXiv:2304.05951.
- Recent Overviews:
  - Reviews in Physics 1, 140 (2016)
  - Defocusing NLS Book, SIAM (OT 143).

# Overview

- Introduction to BECs
- Solitonic Experiments in Repulsive BECs
- Experimental Connections with Nonlinear Optics
- Perturbative Analysis of the Near-Linear Limit
- Soliton Filament Analysis of the Highly Nonlinear Limit
- Multi-Component and Multi-Dimensional Extensions
- Some Quantum Touches
- Recent Developments in Peregrine Solitons.

## **Brief Introduction to BECs**

- 1924: S. Bose and A. Einstein realize that Bose statistics predicts a Maximum Atom Number in the Excited States: a Quantum Phase Transition.
- 1995: E. Cornell, C. Wieman and W. Ketterle realize BEC in a dilute gas of <sup>87</sup>*Rb* and <sup>23</sup>*Na*: 2001 Nobel Prize.
- Today:
  - $\sim 50$  Experimental Groups have achieved BEC (in 100-10^8 atoms of Rb, Li, Na, H).
  - $O(10^4)$  Theoretical and  $O(10^3)$  Experimental papers !



### Mean-Field Models of BEC: why do we care ?

### BEC

• Many Body Hamiltonian

$$\hat{H} = \int d\mathbf{r} \hat{\Psi}^{\dagger} \left[ -\frac{\hbar^2}{2m} \Delta + V_{\text{ext}}(\mathbf{r}) \right] \hat{\Psi} + \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \hat{\Psi}^{\dagger}(\mathbf{r}) \hat{\Psi}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\Psi}(\mathbf{r}') \hat{\Psi}(\mathbf{r})$$
(1)

• Bogoliubov Decomposition:

$$\hat{\Psi} = \Phi(\mathbf{r}, t) + \hat{\Psi}'(\mathbf{r}, t)$$
<sup>(2)</sup>

 Φ is now a regular wavefunction (the expectation value of the field operator). Its equation:

$$i\hbar\frac{\partial\Phi}{\partial t} = -\frac{\hbar^2}{2m}\Delta\Phi + V_{\text{ext}}(\mathbf{r})\Phi + g|\Phi|^2\Phi$$
(3)

- for dilute, cold, binary collision gas.
- But: This is 3D NLS with a Potential: GP !

### Low Dimensional Reductions

• 1d Magnetic Trap and/or Optical Lattice

$$V(x) = \frac{1}{2}\Omega^2 x^2 + V_0 \sin^2(kx + \theta)$$
(4)

• 2d Magnetic Trap and/or Optical Lattice

$$V(x,y) = \frac{1}{2} \left( \Omega_x^2 x^2 + \Omega_y^2 y^2 \right) + V_0 \left( \sin^2(kx + \theta) + \sin^2(ky + \theta) \right)$$
(5)

• Typical 1d Scenario:  $g > 0 \Rightarrow$  Exact Prototypical Solutions: Dark Solitons

$$\Phi(x,t) = e^{-it} \tanh(x - x_0) \Rightarrow n = |\Phi|^2 = \tanh^2(x - x_0)$$
(6)

• It is also possible to have Multiple Spin States of a Bose Gas (such as  ${}^{87}$ Rb or  ${}^{23}$ Na or mixtures thereof)  $\Rightarrow$  In this setting, the Vector NLS Model reads:

$$i\frac{\partial\psi_n}{\partial t} = -\frac{1}{2}\nabla^2\psi_n + V_n(\mathbf{r})\psi_n + \sum_{k=1}^{N} \left[g_{nk}|\psi_k|^2\psi_n - \kappa_{nk}\psi_k + \Delta_{nk}\psi_n\right].$$
 (7)

# One Component Motivation: Dark Soliton Dynamics Early Experiments in JILA, NIST, Hanover



# Improved Experiments in Heidelberg (M. Oberthaler group)



# 3-, 4-, N-soliton States



Time [ms]



Longitudinal coordinate

Time [ms]

90

Improved Experiments in Pullman (P. Engels group)



# Improved Experiments in Hamburg (K. Sengstock group)





### **Two-Component Motivation: Dark-Bright Solitons in Nonlinear Optics**

• Dark-Bright Solitons were shown to Robustly Persist in Photorefractive Crystals



Fig. 7

Zhigang Chen, Mordechai Segev, Tamer H. Coskun, Demetrios N. Christodoulides, Yuri S. Kivshar, "Coupled photorefractive spatial-soliton pairs," J. Opt. Soc. Am. B 14, 3066-3077 (1997); http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-14-11-3066

Image @ 1997 Optical Society of America and may be used for noncommercial purposes only. Report a copyright concern regarding this image.



### Further Early Motivation: Dark-Bright Soliton Pairs in Photorefractives

- Optical (Dark) Solitons were found to be Glued Together by Attraction between the Non-Soliton Beams they Guide
- This gave rise to the notion of Solitonic Gluons



Fig. 3

Image © 1999 Optical Society of America and may be used for n

Citation Elena A. Ostrovskaya, YuriS. Kivshar, Zhigang Chen, Mordechai Segev, "Interaction between vector solitons and solitonic gluons," Opt. Lett. 24, 327-329 (1999); http://www.ontincinfobase.org/ol/abstract.cfm?URI=ol-24-5-327



More Recent Motivation: (Pseudo)-Spinor Experiments in BECs 2-Components, 1-dimension: Dark-Bright Solitons in Pullman



# More Complex Configurations: Multi-Dark-Bright Solitons in BECs (2, 3, 4, 5,...)



### More Complex Dynamics: Interaction of Dark-Bright Solitons with Barriers



(Even) More Complex Dynamics: Counter-Flow Experiments Spontaneous Production of Dark-Bright and Dark-Dark Solitons



# A Recent Addition: Dark-Antidark (DAD) Solitons in Miscible BECs



# Another Recent Addition: Creation of DBB and DDB in Experiments





# A Key Extension: DBB Collisions in Heidelberg

### **Related Systematics: DBB Collisions & Phase Shifts**



### **Related Systematics: DBB Collisions & Phase Shifts**



### Very Recent Development: Dense Soliton Complexes & Collisions



#### **One Component Analysis: the Near-Linear Limit**

• The Simplest Model reads

$$iU_t + \frac{1}{2}U_{xx} - |U|^2 U = \frac{1}{2}\omega^2 x^2 U$$
(8)

- Model assumes strong anisotropy ( $\omega \ll 1$ ), and  $\mu \ll \hbar \omega_{\perp}$ , so that  $\phi_0(r) \propto \exp(-r^2/2a_r^2)$ .
- The Steady State Problem, for  $U(x,t) = e^{-i\mu t}u(x)$  ( $\mu$  is the Chemical Potential) with  $\mathcal{L} = -\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}\omega^2 x^2$  reads:

$$\mu u = \mathcal{L}u + |u|^2 u \tag{9}$$

- Consider Expansion near the Linear Limit  $u = \sqrt{\epsilon u_0} + \epsilon^{3/2}u_1 + \dots$  and  $\mu = \mu_0 + \epsilon \mu_1 + \dots$  This leads to the solvability condition  $\mu_1 = \int |u_0|^4 dx dy dz$ .
- The Linearization Bogoliubov-de Gennes problems then reads:

$$\mathcal{H}_0 = \left(\begin{array}{cc} \mathcal{L}_1 & 0\\ 0 & -\mathcal{L}_1 \end{array}\right),\tag{10}$$

where  $\mathcal{L}_1 = \mathcal{L} - \mu_0$  while

$$\mathcal{H}_{1} = \begin{pmatrix} 2|u_{0}|^{2} - \mu_{1} & u_{0}^{2} \\ -(u_{0}^{2})^{\star} & \mu_{1} - 2|u_{0}|^{2} \end{pmatrix},$$
(11)

Numerical Findings in 1d Case





• In the Linear Limit, the spectrum for 1, 2, 3, ... Dark Solitons is, respectively:

$$\Omega = \pm (n-1), \quad n-2, \quad n-3..., \quad n = 0, 1, ...$$
 (12)

• Using Perturbation Theory, for 1 Dark Soliton we obtain:

$$\left|\Omega_1 - 1 + \frac{\varepsilon^2}{8\sqrt{2\pi}}\right| \le C_1 \varepsilon^4 \tag{13}$$

Another Limit known is the so-called Thomas-Fermi Limit

$$\Omega_0 = 1, \quad \lim_{\mu \to \infty} \Omega_1 = \frac{1}{\sqrt{2}}, \quad \lim_{\mu \to \infty} \Omega_m = \frac{\sqrt{m(m+1)}}{\sqrt{2}}, \qquad m \ge 2 \qquad (14)$$

• Dipolar Oscillation Frequency  $\Omega_0 = 1$  is fixed due to Transformation

$$u(x,t) = e^{ip(t)x - \frac{i}{2}p(t)s(t) - \frac{i}{2}t - i\mu t - i\theta_0}\phi(x - s(t)),$$
(15)  
where  $\dot{s} = p$ ,  $\dot{p} = -s$ 

### Main Focus: Highly Nonlinear Limit

• Consider the GPE Energy

$$H_{1D} = \frac{1}{2} \int_{-\infty}^{\infty} |u_x|^2 + \left(|u|^2 - \mu\right)^2 dx.$$

• For a Dark Soliton Solution:

$$u(x,t) = e^{-i\mu t} \left[ \sqrt{\mu - v^2} \tanh\left(\sqrt{\mu - v^2}(x - x_0)\right) + iv \right], \quad (16)$$

• Obtain  $H_{1D} = (4/3)(\mu - \dot{x}_0^2)^{3/2}$ . Konotop-Pitaevskii (PRL, 2004) assuming the Adiabatic Invariance of  $\mu \to \mu - V(x)$ , obtained:

$$H_{1D} = \frac{4}{3} \left( \mu - V(x_0) - \dot{x}_0^2 \right)^{3/2} \quad \Rightarrow \quad \ddot{x}_0 = -\frac{1}{2} V'(x_0), \tag{17}$$

• Oscillatory Dynamics with  $\omega = \frac{\Omega}{\sqrt{2}}$  for Parabolic Potential  $V(x) = \frac{1}{2}\Omega^2 x^2$ .









**Theory: Adiabatic Invariants for A Soliton Filament** 

• Start with 2D GPE:

$$iu_t = -\frac{1}{2} \left( u_{xx} + u_{yy} \right) + |u|^2 u + V(x)u, \tag{18}$$

• Consider a 1D Potential and its center depending as  $x_0 \rightarrow \xi = \xi(y, t)$ , using the soliton in the 2D energy:

$$H_{2D} = \frac{1}{2} \iint_{-\infty}^{\infty} \left[ |u_x|^2 + |u_y|^2 + \left( |u|^2 - \mu \right)^2 \right] dx \, dy.$$

• Now, using the Solitonic Ansatz, we obtain the Filament Energy Functional:

$$E = \frac{4}{3} \int_{-\infty}^{\infty} \left( 1 + \frac{1}{2} \xi_y^2 \right) \left( \mu - V(\xi) - \xi_t^2 \right)^{3/2} dy.$$
(19)

• From this, we can obtain the Filament Dynamical PDE with  $A = \mu - V(\xi) - \xi_t^2$  and  $B = 1 + \frac{1}{2}\xi_y^2$ .

$$\xi_{tt}B + \frac{1}{3}\xi_{yy}A = \xi_y \,\xi_t \,\xi_{yt} - \frac{1}{2}V'(\xi) \left(B - \xi_y^2\right),\tag{20}$$

### Theory: Adiabatic Invariants for A Soliton Filament (Contd.)

• Assuming that  $\xi = \xi(t)$  is only a Function of Time yields

$$\xi_{tt} = -\frac{1}{2}V'(\xi),$$

• For Weak undulations, and for V(x) = 0, the dynamics is described by (cf. with Kuznetsov-Turitsyn (JETP, 1988))

$$\xi_{tt}+\frac{1}{3}\mu\,\xi_{yy}=0,$$

• For Weak undulations, and for  $V \neq 0$ , the Linearized PDE reads [this has implications for TI in Finite and Infinite Domains]:

$$\xi_{tt} + \frac{1}{3}(\mu - V(\xi_0)) \xi_{yy} = -\frac{V''(\xi_0)}{2}\xi,$$

• For  $V(x) = \frac{1}{2}\Omega^2 x^2$ , one can Linearize Around a Uniform Equilibrium, using:  $\xi(y,t) = X_0 + \epsilon \exp(\lambda t) \cos(k_n y)$  to obtain:

$$\lambda = i\omega = \sqrt{\frac{1}{3}\mu k_n^2 - \frac{1}{2}\Omega^2},\tag{21}$$

# **Spectral Comparison**



### **Adiabatic Invariants for Multiple Soliton Filaments**

• For Multiple Soliton Filaments, incorporate Soliton Interaction Energy

$$E = 2 \int_{-\infty}^{\infty} \left( \frac{4}{3} A^{3/2} B - 8A^{3/2} e^{-4A^{1/2}x_0} \right) dy.$$

• Extract Equation of Motion

$$B\left(x_{0tt} + \frac{V'}{2}\right) + \frac{A}{3}x_{0yy} = \frac{V'}{2}x_{0y}^{2} + x_{0y}x_{0t}x_{0ty}$$
$$-\left[(V' + 2x_{0tt})(-3 + 4A^{1/2}x_{0}) - 8A^{3/2}\right]e^{-4A^{1/2}x_{0}}, \qquad (22)$$

• Infer the Linearization Modes

S

$$RX_{1tt} = -\left[\frac{1}{2}V''(x_0) - \frac{1}{3}k_n^2A_0 + S\right]X_1.$$
  
Here,  $R = 1 + 2(-3 + 4A_0^{1/2}x_0)e^{-4A_0^{1/2}x_0}$ ,  
 $S = R\left[-4S_1\left(V'(x_0)S_2 - 8A_0^{3/2}\right) + 4V'(x_0)S_1\right] + \left[V''(x_0)S_2 + 12V'(x_0)A_0^{1/2}\right]R_0$ ,  
where  $S_0 = e^{-4A_0^{1/2}x_0}$ ,  $S_1 = A_0^{1/2} - V'A_0^{-1/2}x_0/2$ , and  $S_2 = -3 + 4A_0^{1/2}x_0$ .

### **Existence and Stability for Multiple Filaments**


### Existence and Stability for Multiple Filaments (Contd.)



### **Dynamics for Multiple Filaments**



38

### **Dynamics for Multiple Filaments**



39

#### Adiabatic Invariants for Ring Dark Solitons

- For a Ring Dark Soliton in 2D, the Radial Energy is approximately:  $E = 2\pi R \times (\mu - \dot{R}^2 - V(R))^{3/2}.$
- Including Azimuthal Undulations  $R = R(\theta, t)$ , we can obtain the Adiabatic Invariant

$$E = \frac{4}{3} \int_0^{2\pi} R\left(1 + \frac{R_\theta^2}{2R^2}\right) \left(\mu - R_t^2 - V(R)\right)^{3/2} d\theta.$$
(23)

• From this, the Dynamically Relevant PDE Model with  $C = \mu - V(R) - R_t^2$ and  $D = 1 + R_{\theta}^2/(2R^2)$  reads:

$$CD - \frac{R_{\theta\theta}}{R}C = -\frac{R_{\theta}}{R} \left(\frac{3}{2}V'(R)R_{\theta} + 3R_tR_{t\theta}\right) + RD\left(\frac{3}{2}V'(R) + 3R_{tt}\right).$$
 (24)

• Identifying the Equilibrium Radius and Linearization Frequencies

$$\frac{(\mu - V(R_0))}{3R_0} = \frac{V'(R_0)}{2}, \quad \text{and} \quad \omega^2 = \frac{V'(R_0)}{2R_0} \left[\frac{5}{3} - n^2 + \frac{R_0 V''(R_0)}{V'(R_0)}\right].$$

• For the Experimentally Relevant  $V(R) = (1/2)\Omega^2 R^2$ , this yields:

$$R_0^2 = \frac{\mu}{2\Omega^2}$$
 and  $\omega = \pm \left(\frac{1}{2}\left(\frac{8}{3} - n^2\right)\right)^{1/2}\Omega.$  (25)

#### **Confirming the Prediction: Existence/Stability of RDS**



# Confirming the Prediction: Dynamics of RDS



# Confirming the Prediction: Dynamics of RDS (Contd.)



#### **3d Extensions: Planar and Spherical Dark Solitons**

• For Planar Dark Solitons, the Center Position  $\xi = \xi(y, z, t)$  represents an Evolving Surface with:

$$E = \int \left(1 + \frac{1}{2}\xi_y^2 + \frac{1}{2}\xi_z^2\right) \left(\mu - V(\xi) - \xi_t^2\right)^{3/2} dy dz.$$

• For Spherical Dark Shells the Radial Position  $R = R(\theta, \phi, t)$ ,

$$E = \frac{4}{3} \int R^2 \left( 1 + \frac{R_{\theta}^2}{2R^2} + \frac{R_{\phi}^2}{2R^2 \sin^2(\theta)} \right) \left( \mu - R_t^2 - V(R) \right)^{3/2} d\theta d\phi.$$

• From this obtain Equilibrium Position and Linearization with  $\tilde{A} = \int_0^{\pi} R_1^2 \sin \theta d\theta$ ,  $\tilde{B} = \int_0^{\pi} (R_1')^2 \sin \theta d\theta$ , and  $\tilde{C} = \int_0^{\pi} R_1^2 \sin \theta d\theta$   $(R_1 = P_n^l(\cos(\theta)))$ :

$$\frac{2(\mu - V(R_0))}{3R_0} = \frac{V'(R_0)}{2}, \qquad \frac{\omega^2}{\Omega^2} = \frac{7}{6} \frac{V'(R_0)}{R_0} + \frac{1}{2} V''(R_0) - \frac{V'(R_0)}{4R_0} \left(\frac{\tilde{B}}{\tilde{A}} + n^2 \frac{\tilde{C}}{\tilde{A}}\right),$$

• For the Experimentally Relevant  $V(R) = (1/2)\Omega^2 R^2$ , this yields:

$$\omega^{2} = \Omega^{2} \left( \frac{5}{3} - \frac{1}{4} \left( \frac{\tilde{B}}{\tilde{A}} + n^{2} \frac{\tilde{C}}{\tilde{A}} \right) \right).$$
(26)

### **Spherical Dark Shell Solitons: Existence**



### **Spectral Comparison & Dynamics**



### Multi-Component Extension: Dark-Bright Solitons

• Consider the Manakov Model:

$$iu_{t} = -\frac{1}{2}u_{xx} + \left[V_{d} + |u|^{2} + |v|^{2} - \mu_{d}\right]u,$$
  

$$iv_{t} = -\frac{1}{2}v_{xx} + \left[V_{b} + |u|^{2} + |v|^{2} - \mu_{b}\right]v.$$
(27)

• The Dark-Bright Solitons are Exact Solutions that read:

$$u = \sqrt{\mu_d}(\cos(\alpha) \tanh(\nu(x-\xi)) + i\sin(\alpha)), \tag{28}$$

$$v = \sqrt{N_b \nu/2} \operatorname{sech}(\nu(x-\xi)) e^{-i\mu_b t} e^{i\dot{\xi}x},$$
(29)

• Using:  $\mathcal{A} = \mathcal{A}(x) = (\mu_d + N_b^2/16 - V_d(x))^{1/2}$ , the DB Free Energy reads:

$$G_{\mathsf{DB},\mathsf{1D}} = \frac{4}{3}\mathcal{A}^3 - 2\dot{\xi}^2\mathcal{A} + N_b\left(V_b - \frac{1}{2}V_d\right),$$

• Adding  $G_y = \frac{1}{2} \int (|u_y|^2 + |v_y|^2) dx$ , yields the 2D Free Energy:

$$G_{\text{DB},2\text{D}} = \int G_{\text{DB},1\text{D}} + \xi_y^2 \left(\frac{2}{3}\mathcal{A}^3 - \frac{1}{8}N_b^2\mathcal{A} + \frac{1}{48}N_b^3 - \xi_t^2\frac{8\mu_d + N_b^2 - 8V_d}{8\mathcal{A}}\right) \, dy,$$

#### **Dark-Bright Solitons Continued**

• For Center Position  $\xi = X_0 + \epsilon \cos(k_n y) X_1(t)$ , the Near Linear Filament Dynamics reads:

$$X_{1tt} = -\omega_n^2 X_1,$$

with (squared) eigenfrequencies

$$\omega_n^2 = \frac{1}{2} V_d'' - \frac{N_b}{4\mathcal{A}_0} \left( V_b'' - \frac{1}{2} V_d'' \right) - k_n^2 \left( \frac{1}{3} \mathcal{A}_0^2 + \frac{1}{96} \frac{N_b^3}{\mathcal{A}_0} - \frac{1}{16} N_b^2 \right), \quad (30)$$

• For the Experimentally Relevant  $V_{d,b}(x) = (1/2)\Omega^2 x^2$ , this yields:

$$\omega_n^2 = \frac{1}{2}\Omega^2 - \frac{N_b}{8\mathcal{A}_0}\Omega^2 - \frac{1}{3}\mu_d k_n^2 - \left(\frac{N_b}{4\mathcal{A}_0} - 1\right)\frac{N_b^2 k_n^2}{24}.$$
(31)

• This encompasses Dark 1D (1st term), Bright Contribution 1D (2nd term), Dark Transverse Effect (3rd term) and Bright Transverse Effect (4th term).

# **Spectral Comparison**





## **DB** Line Transverse Instability

50



**DB** Line Transverse Instability (Contd.)



# Planar Dark Solitons in 3d (Contd.)



## **Bifurcating Single Vortex Ring in 3d**



#### **Dynamical Formulation for Vortex Ring**

 Consider the Lagrangian Formulation for a Vortex Ring (see, Ruban's work: e.g., arXiv:1706.04348 (published in JETP Letters))

$$L = \int F(R, Z) Z_t - \rho(R, Z) \sqrt{R^2 + R_{\theta}^2 + Z_{\theta}^2} d\theta$$
 (32)

Here, F is a function such that  $F_R = \rho(R, Z)R$  and the Asymptotic (TF) density  $\rho = \mu - V(R, Z)$ .

• Then, the PDEs describing the R- and Z-motion of the VR read (with  $A = \sqrt{R^2 + R_{\theta}^2 + Z_{\theta}^2}$  (the Cylindrical Arclength):

$$\rho RR_t = -\rho_z A + \frac{\partial}{\partial \theta} \left( \frac{\rho Z_\theta}{A} \right)$$
(33)

$$\rho R Z_t = \rho_R A + \frac{\rho}{A} R - \frac{\partial}{\partial \theta} \left( \frac{\rho Z_\theta}{A} \right)$$
(34)

• From this obtain Equilibrium with Z = 0 and  $R = R_0 = (2\mu)/(3\Omega_R^2)$  and Linearizing with  $R = R_0 + \sum \epsilon R_m \cos(m\theta)$  and  $Z = \sum \epsilon Z_m \cos(m\theta)$ , we obtain the Frequencies:

$$\omega = \frac{3}{R_{\perp}^2} \left( (m^2 - \tilde{\lambda}^2)(m^2 - 3) \right)^{1/2}$$
(35)

• Conclusion: Rings for  $1 < \tilde{\lambda} = \Omega_z / \Omega_R < 2$ , Stable, Otherwise Unstable.

# **Spectral Comparison**



# **VR Instability Dynamical Evolution**



## **Torus Knots**



58

## **Usefulness for Understanding Experiments: VL/VR Collisions**



## **Details of VL/VR Collision Experiments**



## A Theoretical Understanding of VL/VR Collision Experiments



### 2D Extension: A Single Vortex-Bright Soliton



## **3D Extensions: Vortex Line-Bright and Vortex-Ring Bright**



### Beyond Mean-Field: Transverse Instability of Bent Dark Solitons



### Beyond Mean-Field: Bent Dark Solitons (Contd.)



65



### **Beyond Mean-Field: Dark-Bright Solitons**

### Summary of Results

- Gave Physical Motivation for the study of Dark & Dark-Bright Filament Coherent Structures, especially in Higher Dimensional Settings.
- Unveiled Transverse Instabilities by means of Adiabatic Invariant Approach in 2D, and 3D. Used it to obtain Steady States, Stability and Dynamics.
- Considered Extensions to Ring Dark Solitons and to Planar, as well as Shell Dark Solitons.
- Considered Generalizations to Multi-components exploring the case of Dark-Bright Solitons and their Higher-dimensional Analogues.
- Also Examined Variations towards Vortex Ring Filaments and their Existence/Stability/Dynamics.
- Demonstrated Practical Usefulness of these considerations in Explaining Observations of Higher Dimensional Experiments.

## **Present/Future Challenges**

- One can examine Multi-dimensional Case of Interacting Dark Solitons
- One can consider Connection of Collapse in the context of Filament Equations with Formation Time of Vortical Patterns.
- It is relevant to Examine Dynamics in Intrinsic Variables such as Arclength-Normal.
- Determine Filamentary Description of Vortex Lines and their Kelvin Waves.
- Describe Multi-Component, Multi-Dimensional Structures as Filaments.
- Can Something be explored in the Quantum, Many-Body Case ?

## **Bifurcating Double Vortex Ring in 3d**



## **Bifurcating Triple Vortex Ring in 3d**





#### **Extensions to Klein-Gordon Models**

• Klein-Gordon Models are of the Form:

$$u_{tt} = \Delta u - (1 + V_{ext}(x, y))V'(u)$$
(36)

• They possess a Conserved 2d Energy that reads:

$$H_{2d} = \int \left[\frac{1}{2}\left(u_t^2 + u_x^2 + u_y^2\right) + (1 + V_{ext}(x, y))V(u)\right] dxdy$$
(37)

- The Potentials are typically, e.g.,  $V(u) = 1 \cos(u)$ , with a Kink Waveform  $f(s) = 4 \arctan(\exp(s))$  (sine-Gordon), or  $V(u) = (u^2 1)^2/2$  with a Kink  $f(s) = \tanh(s) \ (\phi^4)$ .
- Using an Ansatz of the form u(x, y, t) = f(x X(y, t)) one retrieves an Effective Energy and Equation of Motion:

$$E = \int dy \left[ \frac{1}{2} M \left( X_t^2 + X_y^2 \right) + E_{1d}^{1K} + P(X) \right] \Rightarrow X_{tt} = X_{yy} - \frac{1}{M} P'(X), \quad (38)$$

where

$$P(X) = \int_{-\infty}^{\infty} V_{ext}(x) G(x - X) dx$$
(39)

#### Klein-Gordon Models: Radial Case

• One can extend these consideration to the Radial Case with Hamiltonian:

$$H_{2d} = \int \left[ \frac{1}{2} \left( u_t^2 + u_r^2 + \frac{1}{r^2} u_\theta^2 \right) + (1 + V_{ext}(r,\theta)) V(u) \right] r dr d\theta.$$
(40)

• Upon use of the Ansatz, the Energy becomes:

$$E = \int \left[ \frac{1}{2} M R R_t^2 + E_{SK}^{1d} R + \frac{1}{2} \frac{M}{R} R_{\theta}^2 + P(R) \right] d\theta$$
 (41)

• From this, one can extract the Equation of Motion as:

$$MRR_{tt} + \frac{M}{2}R_t^2 + \frac{M}{2}R_{\theta}^2 - \frac{M}{R}R_{\theta\theta} = -E_{SK}^{1d} - P'(R)$$
(42)

• One can then Linearize around an Equilibrium Kink Radius  $R = R_0 + \epsilon R_1(t)e^{in\theta}$  to obtain (with Q(R) = P'(R)/R):

$$M\ddot{R}_{1} = \frac{M}{R_{0}^{2}} \left(1 - n^{2}\right) R_{1} - Q'(R_{0})R_{1}$$
(43)

and the corresponding Frequencies

$$\omega^2 = \frac{1}{R_0^2} (n^2 - 1) - \frac{1}{M} Q'(R_0)$$
(44)
## Stability Properties of 2d Kinks in sG



## Stability Properties of 2d Kinks in sG





## **Dynamical Properties of 2d Kinks in sG**

## **Radial sG Kinks: Stability and Dynamics**

