Mutual Friction Force **F**_{ns}

Classical modeling of **F***ns*

▲□▶▲□▶▲□▶▲□▶ □ のQの

A self-consistent model of superfluid ⁴He turbulence FOUCAULT

L. Galantucci

Bridging Classical and Quantum Turbulence

12 July 2023

IAC - CNR

Mutual Friction Force **F**_{ns} 00000000 Classical modeling of **F***ns*

Collaborators

Observatoire de la Cote d'Azur

Newcastle University

Carlo Barenghi

Andrew Baggaley

▲□▶▲□▶▲□▶▲□▶ □ のQ@

LG, A. Baggaley, C. Barenghi, G. Krstulovic, *Eur. Phys. J. Plus* **135**, 547 (2020) LG, C. Barenghi, G. Krstulovic, *Phys Rev Fluids* **8**, 014702 (2023)

Giorgio Krstulovic

Mutual Friction Force Fns 00000000 Classical modeling of F_{ns}

Collaborators

Observatoire de la Cote d'Azur

Newcastle University

Carlo Barenghi

Andrew Baggaley

▲□▶▲□▶▲□▶▲□▶ □ のQ@

LG, A. Baggaley, C. Barenghi, G. Krstulovic, *Eur. Phys. J. Plus* **135**, 547 (2020) LG, C. Barenghi, G. Krstulovic, *Phys Rev Fluids* **8**, 014702 (2023)

Giorgio Krstulovic

Introduction

Mutual Friction Force \mathbf{F}_n

Classical modeling of **F***ns*

Overview

- **2** Mutual Friction Force \mathbf{F}_{ns}
- 3 Classical modeling of \mathbf{F}_{ns}

Introduction	
●000000	

Mutual Friction Force \mathbf{F}_n 00000000 Classical modeling of F*ns*

Results

Overview

2 Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

Mutual Friction Force **F**_{ns}

Classical modeling of **F***ns*

Helium II - TWO FLUID MODEL

Tisza (1938), Landau(1941)

SUPERFLUID

- ~ condensate
 - related to BEC
- ho_s , \mathbf{v}_s
- no entropy
- inviscid $v_s = 0$
- ~ Euler fluid

NORMAL FLUID

- thermal excitations
 - phonons
 - rotons (1.5K < T < 2.1K)

▲□▶▲□▶▲□▶▲□▶ □ のQの

- ρ_n , \mathbf{v}_n
- entropy $s \neq 0$
- viscosity $v_n \sim 10^{-8} m^2/s$
- ~ Navier-Stokes fluid

Introduction	
0000000	

Classical modeling of **F***ns*

Helium II

•
$$\rho = \rho_s + \rho_n = 145 \ kg \ m^{-3}$$

Mutual Friction Force **F**_{ns}

Results

Helium II - Quantised Vortices

- topological defects of the superfluid
- one-dimensional structures $a_0 \sim 1\text{\AA}$ • $\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$
 - $D \sim 10^{-3} \text{ m} \div 10^{-2} \text{ m}$
- $\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$ confined to vortex lines $\mathbf{s}(\zeta, t)$ $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

vortex-lines scattering centres for thermal-excitations \downarrow mutual friction force \mathbf{F}_{ns}

Mutual Friction Force \mathbf{F}_{n} .

Classical modeling of \mathbf{F}_{ns}

Results

Helium II - Quantised Vortices

- topological defects of the superfluid
- one–dimensional structures $a_0 \sim 1\text{\AA}$

•
$$\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$$

• $D \sim 10^{-3} \text{ m} \div 10^{-2} \text{ m}$

•
$$\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$$
 confined to vortex lines $\mathbf{s}(\zeta, t)$
 $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

vortex-lines scattering centres for thermal-excitations \downarrow mutual friction force \mathbf{F}_{ns}

Mutual Friction Force \mathbf{F}_{n} .

Classical modeling of \mathbf{F}_{ns}

Results

Helium II - Quantised Vortices

- topological defects of the superfluid
- one–dimensional structures $a_0 \sim 1\text{\AA}$

•
$$\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$$

• $D \sim 10^{-3} \text{ m} \div 10^{-2} \text{ m}$

•
$$\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$$
 confined to vortex lines $\mathbf{s}(\zeta, t)$
 $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

vortex-lines scattering centres for thermal-excitations ↓ mutual friction force **F**_{ns}

Mutual Friction Force \mathbf{F}_{n} .

Classical modeling of \mathbf{F}_{ns}

Helium II - Quantised Vortices

- topological defects of the superfluid
- one–dimensional structures $a_0 \sim 1\text{\AA}$

•
$$\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$$

• $D \sim 10^{-3} \text{ m} \div 10^{-2} \text{ m}$

•
$$\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$$
 confined to vortex lines $\mathbf{s}(\zeta, t)$
 $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

vortex-lines scattering centres for thermal-excitations \downarrow mutual friction force \mathbf{F}_{ns}

Mutual Friction Force **F**_{ns}

Classical modeling of \mathbf{F}_{ns}

Results

Helium II - Quantised Vortices

- topological defects of the superfluid
- one–dimensional structures $a_0 \sim 1\text{\AA}$

•
$$\ell \sim 10^{-4} \text{ m} \div 10^{-5} \text{ m}$$

• $D \sim 10^{-3} \text{ m} \div 10^{-2} \text{ m}$

•
$$\boldsymbol{\omega}_{s} = \nabla \times \mathbf{v}_{s}$$
 confined to vortex lines $\mathbf{s}(\zeta, t)$
 $\boldsymbol{\omega}_{s}(\mathbf{x}, t) = \kappa \oint_{\mathscr{L}} \mathbf{s}'(\zeta, t) \delta^{(3)}(\mathbf{x} - \mathbf{s}(\zeta, t)) d\zeta$

• circulation quantized, $\kappa = h/m = 10^{-7} \text{m}^2/\text{s}$

•
$$\mathbf{v}_{s}(\mathbf{x},t) = \nabla \phi + \frac{\kappa}{4\pi} \oint_{\mathscr{L}} \frac{\mathbf{s}'(\zeta,t) \times [\mathbf{x} - \mathbf{s}(\zeta,t)]}{|\mathbf{x} - \mathbf{s}(\zeta,t)|^{3}} d\zeta$$

vortex-lines scattering centres for thermal-excitations $\downarrow \downarrow$ mutual friction force \mathbf{F}_{ns}

Mutual Friction Force **F**_{ns}

Classical modeling of **F***ns*

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

Helium II - Quantised Vortices

The rotation of liquid helium II II. The theory of mutual friction in uniformly rotating helium II

BY H. E. HALL AND W. F. VINEN

The Royal Society Mond Laboratory, University of Cambridge

Hall, H.E. and Vinen, W.F.,

The rotation of liquid helium II. II The theory of mutual friction in uniformly rotating helium II,

Proc. R. Soc. London A 215, 215 (1956)

Classical modeling of Fns

Results

Helium II - Mutual Friction Force \mathbf{F}_{ns}

COFLOWS $\overline{\mathbf{v}}_n \approx \overline{\mathbf{v}}_s$

- He II mechanically driven at large scales

- **F**_{ns} couples the two fluids
- $E(k) \sim k^{-5/3}$
- turbulent decay $L(t) \sim t^{-3/2}$
- - $\mathbf{F}_{ns} \neq 0 \Rightarrow \epsilon_{ns} > 0$

Classical modeling of Fns

Results

Helium II - Mutual Friction Force \mathbf{F}_{ns}

COFLOWS $\overline{\mathbf{v}}_n \approx \overline{\mathbf{v}}_s$

- He II mechanically driven at large scales
 - oscillating grids, objects
 - bellows \rightarrow channel flow

- **F**_{ns} couples the two fluids
- $E(k) \sim k^{-5/3}$
- turbulent decay $L(t) \sim t^{-3/2}$
- - $\mathbf{F}_{ns} \neq 0 \Rightarrow \epsilon_{ns} > 0$

Mutual Friction Force Fns

Classical modeling of Fns

Results

Helium II - Mutual Friction Force \mathbf{F}_{ns}

COFLOWS $\overline{\mathbf{v}}_n \approx \overline{\mathbf{v}}_s$

- He II mechanically driven at large scales
 - oscillating grids, objects
 - bellows \rightarrow channel flow

Large scales $\Delta \gg \ell$

- **F**_{ns} couples the two fluids $\dot{\mathbf{s}} - \mathbf{v}_n \to 0 \Rightarrow \epsilon_{ns} \to 0$
- $E(k) \sim k^{-5/3}$ [Maurer et al., EPL (1998)]
- turbulent decay $L(t) \sim t^{-3/2}$ [Stalp et al., Phys Rev Lett (1999)]

• $\mathbf{F}_{ns} \neq 0 \Rightarrow \epsilon_{ns} > 0$

Mutual Friction Force Fns

Classical modeling of Fns

Results

Helium II - Mutual Friction Force \mathbf{F}_{ns}

COFLOWS $\overline{\mathbf{v}}_n \approx \overline{\mathbf{v}}_s$

- He II mechanically driven at large scales
 - oscillating grids, objects
 - bellows → channel flow

Large scales $\Delta \gg \ell$

- **F**_{ns} couples the two fluids $\dot{\mathbf{s}} - \mathbf{v}_n \to 0 \Rightarrow \epsilon_{ns} \to 0$
- $E(k) \sim k^{-5/3}$ [Maurer et al., EPL (1998)]
- turbulent decay $L(t) \sim t^{-3/2}$ [Stalp et al., Phys Rev Lett (1999)]
- Small scales $\delta < \ell$
 - $\mathbf{F}_{ns} \neq 0 \Rightarrow \epsilon_{ns} > 0$ dissipation anomaly in superfluids [LG et al., Phys Rev Fluids (2023)]

[Salort et al., Phys Fluids (2010)]

Mutual Friction Force **F**_{ns}

Helium II - Mutual Friction Force **F**_{ns}

COUNTERFLOWS

 $\overline{\mathbf{v}}_n \rightleftharpoons \overline{\mathbf{v}}_s$

- He II thermically driven
 - heater placed in a channel
 - $\bar{\mathbf{v}}_n = -(\rho_s/\rho_n)\bar{\mathbf{v}}_s$
- no coupling of the two fluids
- $\mathbf{F}_{ns} \neq \mathbf{0}$
- $\epsilon_{ns} > 0$ at all scales
- Dissipation Excess $E_n(k) \sim k^{-m}$, m > 5/3 [Gao et al., Phys Rev B (2017)]
- $E_s(k) \sim k^{-1}$, random tangle [Barenghi *et al.*, *Sci Rep* (2016)]
- turbulent decay $L(t) \sim t^{-1}$ [Baggaley *et al.*, *Phys Rev B* (2012)]

イロト 不得 トイヨト イヨト

3

Helium II - Mutual Friction Force **F**_{ns}

COUNTERFLOWS

 $\overline{\mathbf{v}}_n \rightleftharpoons \overline{\mathbf{v}}_s$

- He II thermically driven
 - heater placed in a channel
 - $\mathbf{\bar{v}}_n = -(\rho_s/\rho_n)\mathbf{\bar{v}}_s$
- no coupling of the two fluids
- $\mathbf{F}_{ns} \neq \mathbf{0}$
- $\epsilon_{ns} > 0$ at all scales
- Dissipation Excess $E_n(k) \sim k^{-m}$, m > 5/3 [Gao et al., Phys Rev B (2017)]
- $E_s(k) \sim k^{-1}$, random tangle [Barenghi *et al.*, *Sci Rep* (2016)]
- turbulent decay $L(t) \sim t^{-1}$ [Baggaley *et al.*, *Phys Rev B* (2012)]

<ロト < 同ト < 回ト < ヨト = 王

Helium II - Mutual Friction Force **F**_{ns}

COUNTERFLOWS

 $\overline{\mathbf{v}}_n \rightleftharpoons \overline{\mathbf{v}}_s$

- He II thermically driven
 - heater placed in a channel
 - $\bar{\mathbf{v}}_n = -(\rho_s/\rho_n)\bar{\mathbf{v}}_s$
- no coupling of the two fluids
- $\mathbf{F}_{ns} \neq 0$
- $\epsilon_{ns} > 0$ at all scales
- Dissipation Excess $E_n(k) \sim k^{-m}$, m > 5/3 [Gao et al., Phys Rev B (2017)]
- $E_s(k) \sim k^{-1}$, random tangle [Barenghi *et al.*, *Sci Rep* (2016)]
- turbulent decay $L(t) \sim t^{-1}$ [Baggaley *et al.*, *Phys Rev B* (2012)]

<ロト < 同ト < 回ト < ヨト = 王

Helium II - Mutual Friction Force \mathbf{F}_{ns}

COUNTERFLOWS

 $\overline{\mathbf{v}}_n \rightleftharpoons \overline{\mathbf{v}}_s$

- He II thermically driven
 - heater placed in a channel
 - $\mathbf{\bar{v}}_n = -(\rho_s/\rho_n)\mathbf{\bar{v}}_s$
- no coupling of the two fluids
- $\mathbf{F}_{ns} \neq 0$
- $\epsilon_{ns} > 0$ at all scales
- Dissipation Excess $E_n(k) \sim k^{-m}, m > 5/3$ [Gao et al., Phys Rev B (2017)]
- $E_s(k) \sim k^{-1}$, random tangle [Barenghi *et al.*, *Sci Rep* (2016)]
- turbulent decay $L(t) \sim t^{-1}$ [Baggaley *et al.*, *Phys Rev B* (2012)]

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

ъ

Helium II - Mutual Friction Force **F**_{ns}

COUNTERFLOWS

 $\overline{\mathbf{v}}_n \rightleftharpoons \overline{\mathbf{v}}_s$

- He II thermically driven
 - heater placed in a channel
 - $\mathbf{\bar{v}}_n = -(\rho_s/\rho_n)\mathbf{\bar{v}}_s$
- no coupling of the two fluids
- $\mathbf{F}_{ns} \neq 0$
- $\epsilon_{ns} > 0$ at all scales
- Dissipation Excess $E_n(k) \sim k^{-m}, m > 5/3$ [Gao et al., Phys Rev B (2017)]
- $E_s(k) \sim k^{-1}$, random tangle [Barenghi *et al.*, *Sci Rep* (2016)]
- turbulent decay $L(t) \sim t^{-1}$ [Baggaley *et al.*, *Phys Rev B* (2012)]

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

ъ

Classical modeling of \mathbf{F}_{ns}

Helium II - Mutual Friction Force **F**_{ns}

COUNTERFLOWS

 $\overline{\mathbf{v}}_n \rightleftharpoons \overline{\mathbf{v}}_s$

- He II thermically driven
 - heater placed in a channel
 - $\bar{\mathbf{v}}_n = -(\rho_s/\rho_n)\bar{\mathbf{v}}_s$
- no coupling of the two fluids
- $\mathbf{F}_{ns} \neq 0$
- $\epsilon_{ns} > 0$ at all scales
- Dissipation Excess $E_n(k) \sim k^{-m}, m > 5/3$ [Gao et al., Phys Rev B (2017)]
- $E_s(k) \sim k^{-1}$, random tangle [Barenghi *et al.*, *Sci Rep* (2016)]
- turbulent decay $L(t) \sim t^{-1}$ [Baggaley *et al.*, *Phys Rev B* (2012)]

Introduction

Mutual Friction Force \mathbf{F}_{ns}

Classical modeling of **F***ns*

Overview

2 Mutual Friction Force \mathbf{F}_{ns}

3 Classical modeling of **F**_{ns}

Mutual Friction Force \mathbf{F}_{ns} $0 \bullet 000000$ Results

Helium II - Mutual friction force \mathbf{F}_{ns}

• pioneering work Hall & Vinen

[Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 204 (1956)]
 [Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956)]

- distinct approaches have modeled **F**_{ns}
 - probed lengthscales $\Delta \gg \ell$, $\delta < \ell$
 - configuration superfluid vortex tangle
 - numerical simulations performed
- Coarse-grained framework Δ ≫ ℓ
 [Hall & Vinen, *Proc. Roy. Soc. Lond. A* 238, 215 (1956)]
- ⓐ local kinematic model $\delta < \ell$, *imposed* $\hat{\mathbf{V}}_n$ [Schwarz, *Phys. Rev. B* **18**, 245 (1978)]
- (a) fully-coupled local approach $\delta < \ell$, $\mathbf{v}_n(\mathbf{x}, t)$ [Kivotides *et al.*, *Science* **290**, 777 (2000)]

[Bewley *et al.*, *Nature* **441**, 588 (2006)]

Mutual Friction Force \mathbf{F}_{ns} $0 \bullet 000000$

Helium II - Mutual friction force \mathbf{F}_{ns}

• pioneering work Hall & Vinen

[Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 204 (1956)]
 [Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956)]

- distinct approaches have modeled \mathbf{F}_{ns}
 - probed length scales $\Delta \gg \ell$, $\delta < \ell$
 - configuration superfluid vortex tangle
 - numerical simulations performed
- coarse-grained framework $\Delta \gg \ell$ [Hall & Vinen, *Proc. Roy. Soc. Lond. A* 238, 215 (1956)]
- ② local kinematic model $\delta < \ell$, imposed \hat{V}_{r} [Schwarz, Phys. Rev. B 18, 245 (1978)]
- (a) fully-coupled local approach $\delta < \ell$, $\mathbf{v}_n(\mathbf{x}, t)$ [Kivotides *et al.*, *Science* **290**, 777 (2000)]

[Bewley *et al.* , *Nature* **441**, 588 (2006)]

Mutual Friction Force \mathbf{F}_{ns} $0 \bullet 000000$

Helium II - Mutual friction force \mathbf{F}_{ns}

pioneering work Hall & Vinen
 [Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 204 (1956)]

[Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956)]

- distinct approaches have modeled \mathbf{F}_{ns}
 - probed length scales $\Delta \gg \ell$, $\delta < \ell$
 - configuration superfluid vortex tangle
 - numerical simulations performed
- coarse-grained framework $\Delta \gg \ell$

[Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956)]

- O cal kinematic model δ < ℓ, imposed \hat{V}_n [Schwarz, Phys. Rev. B 18, 245 (1978)]
- fully-coupled local approach $\delta < \ell$, $\mathbf{v}_n(\mathbf{x}, t)$ [Kivotides *et al.*, *Science* **290**, 777 (2000)]

[Bewley *et al.*, *Nature* **441**, 588 (2006)]

Mutual Friction Force \mathbf{F}_{ns}

Classical modeling of **F***ns*

F_{ns}: coarse-grained model HVBK

- I. attentuation of 2nd sound
 - dependence on $\theta((\mathbf{v}_s \mathbf{v}_n), \hat{\mathbf{\Omega}})$
- II. theory of **F**_{ns}
 - vortex scattering of rotons
 - dragging of normal fluid
 - Magnus force
- Feynman's model of vortex lines confirmed!

$$\mathbf{F}_{ns} = -B \frac{\rho_s \rho_n}{\rho} \frac{\boldsymbol{\omega}_s \times [\boldsymbol{\omega}_s \times (\overline{\mathbf{v}}_s - \overline{\mathbf{v}}_n)]}{\omega_s} - B' \frac{\rho_s \rho_n}{\rho} \boldsymbol{\omega}_s \times (\overline{\mathbf{v}}_s - \overline{\mathbf{v}}_n)$$

Mutual Friction Force \mathbf{F}_{ns} 0000000 Classical modeling of \mathbf{F}_{ns}

Results

Helium II - Mutual friction force \mathbf{F}_{ns}

• pioneering work Hall & Vinen

[Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 204 (1956)]
 [Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956)]

- distinct approaches have modeled \mathbf{F}_{ns}
 - probed length scales $\Delta \gg \ell$, $\delta < \ell$
 - configuration superfluid vortex tangle
 - numerical simulations performed
- coarse-grained framework Δ ≫ ℓ
 [Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956)]
- Schwarz, *Phys. Rev. B* **18**, 245 (1978)]
- fully-coupled local approach $\delta < \ell$, $\mathbf{v}_n(\mathbf{x}, t)$ [Kivotides *et al.*, *Science* **290**, 777 (2000)]

[Schwarz, *Phys. Rev. B* **18**, 245 (1978)

Mutual Friction Force \mathbf{F}_{ns} 0000000 Classical modeling of **F***ns*

Results

F_{ns}: Local kinematic model: VFM

- $\widehat{\mathbf{V}}_n(\mathbf{x}, t) \implies$ tangle evolution $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
 - uniform
 - parabolic
 - Hagen-Poiseuille tail-flattened flows
 - vortex tubes
 - ABC flow
 - random waves
 - turbulent NS flows

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

$$\mathbf{f}_{sn} = -\alpha \rho_s \kappa \, \mathbf{s}' \times \left[\mathbf{s}' \times \left(\widehat{\mathbf{V}}_n - \mathbf{v}_s \right) \right] - \alpha' \rho_s \kappa \, \mathbf{s}' \times \left(\widehat{\mathbf{V}}_n - \mathbf{v}_s \right)$$
$$\boldsymbol{\alpha} = B \rho_n / (2\rho) \quad , \quad \boldsymbol{\alpha}' = B' \rho_n / (2\rho)$$

Mutual Friction Force \mathbf{F}_{ns} 0000000 Classical modeling of **F***ns*

F_{ns}: Local kinematic model: VFM

- $\widehat{\mathbf{V}}_n(\mathbf{x}, t) \implies$ tangle evolution $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
 - uniform
 - parabolic
 - Hagen-Poiseuille tail-flattened flows
 - vortex tubes
 - ABC flow
 - random waves
 - turbulent NS flows

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

$$\mathbf{f}_{sn} = -\alpha \rho_s \kappa \, \mathbf{s}' \times \left[\mathbf{s}' \times \left(\widehat{\mathbf{V}}_n - \mathbf{v}_s \right) \right] - \alpha' \rho_s \kappa \, \mathbf{s}' \times \left(\widehat{\mathbf{V}}_n - \mathbf{v}_s \right)$$
$$\alpha = B \rho_n / (2\rho) \quad , \quad \alpha' = B' \rho_n / (2\rho)$$

Mutual Friction Force \mathbf{F}_{ns} 0000000 Classical modeling of **F***ns*

F_{ns}: Local kinematic model: VFM

- $\widehat{\mathbf{V}}_n(\mathbf{x}, t) \implies$ tangle evolution $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
 - uniform
 - parabolic
 - Hagen-Poiseuille tail-flattened flows
 - vortex tubes
 - ABC flow
 - random waves
 - turbulent NS flows

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

$$\mathbf{f}_{sn} = -\alpha \rho_{s} \kappa \, \mathbf{s}' \times \left[\mathbf{s}' \times \left(\widehat{\mathbf{V}}_{n} - \mathbf{v}_{s} \right) \right] - \alpha' \rho_{s} \kappa \, \mathbf{s}' \times \left(\widehat{\mathbf{V}}_{n} - \mathbf{v}_{s} \right)$$
$$\alpha = B \rho_{n} / (2\rho) \quad , \quad \alpha' = B' \rho_{n} / (2\rho)$$

Mutual Friction Force \mathbf{F}_{ns}

Classical modeling of **F***ns*

Results

F_{ns}: Local kinematic model: VFM

- $\widehat{\mathbf{V}}_n(\mathbf{x}, t) \implies$ tangle evolution $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
 - uniform
 - parabolic
 - Hagen-Poiseuille tail-flattened flows
 - vortex tubes
 - ABC flow
 - random waves
 - turbulent NS flows

▲□▶▲□▶▲□▶▲□▶ □ のQの

$$\mathbf{f}_{sn} = -\alpha \rho_s \kappa \, \mathbf{s}' \times \left[\mathbf{s}' \times \left(\widehat{\mathbf{V}}_n - \mathbf{v}_s \right) \right] - \alpha' \rho_s \kappa \, \mathbf{s}' \times \left(\widehat{\mathbf{V}}_n - \mathbf{v}_s \right)$$
$$\alpha = B \rho_n / (2\rho) \quad , \quad \alpha' = B' \rho_n / (2\rho)$$

Mutual Friction Force F_{ns} 00000000

Helium II - Mutual friction force \mathbf{F}_{ns}

• pioneering work Hall & Vinen [Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 204 (1956)]

[Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956)]

- distinct approaches have modeled \mathbf{F}_{ns}
 - probed length scales $\Delta \gg \ell$, $\delta < \ell$
 - configuration superfluid vortex tangle
 - numerical simulations performed

coarse-grained framework Δ ≫ ℓ
 [Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956)]

- Schwarz, *Phys. Rev. B* **18**, 245 (1978)]
- fully-coupled local approach $\delta < \ell$, $\mathbf{v}_n(\mathbf{x}, t)$ [Kivotides *et al.*, *Science* **290**, 777 (2000)]

[Kivotides *et al.* , *Science* **290**, 777 (2000)]

F_{ns}: fully coupled local model: shortcomings

- $\mathbf{v}_n(\mathbf{x}, t)$ NS Eqs. \iff tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
- simple vortex configurations
 - vortex ring in quiescent normal fluid [Kivotides *et al.*, *Science* **290**, 777 (2000)]
 - single vortex line
 [Idowu et al., Phys. Rev. B 62, 2409 (2000)]
 [Idowu et al., J Low temp Phys 120, 269 (2000)]
- decaying turbulent flows [Kivotides, J. Fluid Mech. 668, 58 (2011)] no statistically steady state!

Mutual Friction Force \mathbf{F}_{ns} 00000000

F_{ns}: *fully coupled* local model: shortcomings

- $\mathbf{v}_n(\mathbf{x}, t)$ NS Eqs. \iff tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
- simple vortex configurations
 - vortex ring in quiescent normal fluid [Kivotides *et al.*, *Science* **290**, 777 (2000)]
 - single vortex line
 [Idowu et al., Phys. Rev. B 62, 2409 (2000)]
 [Idowu et al., J Low temp Phys 120, 269 (2000)]
- decaying turbulent flows [Kivotides, J. Fluid Mech. 668, 58 (2011)] no statistically steady state!

Mutual Friction Force \mathbf{F}_{ns} 00000000

F_{ns}: *fully coupled* local model: shortcomings

- $\mathbf{v}_n(\mathbf{x}, t)$ NS Eqs. \iff tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
- simple vortex configurations
 - vortex ring in quiescent normal fluid [Kivotides *et al.*, *Science* **290**, 777 (2000)]
 - single vortex line
 [Idowu et al., Phys. Rev. B 62, 2409 (2000)]
 [Idowu et al., J Low temp Phys 120, 269 (2000)]
- decaying turbulent flows [Kivotides, J. Fluid Mech. 668, 58 (2011)] no statistically steady state!

Mutual Friction Force \mathbf{F}_{ns} 00000000 Results

F_{ns}: *fully coupled* local model: shortcomings

- $\mathbf{v}_n(\mathbf{x}, t)$ NS Eqs. \iff tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
- simple vortex configurations
 - vortex ring in quiescent normal fluid [Kivotides *et al.*, *Science* **290**, 777 (2000)]
 - single vortex line

[Idowu *et al.*, *Phys. Rev. B* **62**, 2409 (2000)] [Idowu *et al.*, *J Low temp Phys* **120**, 269 (2000)]

• decaying turbulent flows [Kivotides, J. Fluid Mech. 668, 58 (2011)] no statistically steady state!

Mutual Friction Force \mathbf{F}_{ns} 0000000 Classical modeling of F_{ns}

F_{ns}: *fully coupled* local model: shortcomings

- $\mathbf{v}_n(\mathbf{x}, t)$ NS Eqs. \iff tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
- simple vortex configurations
 - vortex ring in quiescent normal fluid [Kivotides *et al.*, *Science* **290**, 777 (2000)]
 - single vortex line

[Idowu *et al.*, *Phys. Rev. B* **62**, 2409 (2000)] [Idowu *et al.*, *J Low temp Phys* **120**, 269 (2000)]

• decaying turbulent flows

[Kivotides, *J. Fluid Mech.* **668**, 58 (2011)] no statistically steady state!

Mutual Friction Force \mathbf{F}_{ns} 0000000 Classical modeling of F_{ns}

F_{ns}: *fully coupled* local model: shortcomings

- $\mathbf{v}_n(\mathbf{x}, t)$ NS Eqs. \iff tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$
- simple vortex configurations
 - vortex ring in quiescent normal fluid [Kivotides *et al.*, *Science* **290**, 777 (2000)]
 - single vortex line

[Idowu *et al.*, *Phys. Rev. B* **62**, 2409 (2000)] [Idowu *et al.*, *J Low temp Phys* **120**, 269 (2000)]

• decaying turbulent flows

[Kivotides, J. Fluid Mech. 668, 58 (2011)] no statistically steady state!

Mutual Friction Force \mathbf{F}_{ns} 0000000

F_{ns}: *fully coupled* local model: shortcomings

- mismatch $\langle \mathbf{v}_n \rangle_{\Delta \gg \ell}$ and $\mathbf{v}_n(\mathbf{x}, t)_{\delta < \ell}$
 - \Rightarrow re-determination the friction coefficients
- friction coefficients are recalculations of $\Delta \gg \ell$ (α , α') [Hall & Vinen, *Proc. Roy. Soc. Lond. A* 238, 204 (1956)] \downarrow (D, D_t) [Idowu *et al.*, *J Low temp Phys* 120, 269 (2000)]
- Numerics: low parallelisation
 - $\mathbf{v}_n(\mathbf{x}, t)$ on 128³ grid
 - $N_p \sim 5 \times 10^4$

small range of scales !

 $D/a_0 \sim 10^8$

Mutual Friction Force \mathbf{F}_{ns} 0000000 Results

F_{ns}: *fully coupled* local model: shortcomings

- mismatch $\langle \mathbf{v}_n \rangle_{\Delta \gg \ell}$ and $\mathbf{v}_n(\mathbf{x}, t)_{\delta < \ell}$
 - \Rightarrow re-determination the friction coefficients
- friction coefficients are recalculations of $\Delta \gg \ell$ (α , α') [Hall & Vinen, *Proc. Roy. Soc. Lond. A* **238**, 204 (1956)] \downarrow (D, D_t) [Idowu *et al.*, *J Low temp Phys* **120**, 269 (2000)]
- Numerics: low parallelisation
 - $\mathbf{v}_n(\mathbf{x}, t)$ on 128³ grid
 - $N_p \sim 5 \times 10^4$

small range of scales !

 $D/a_0 \sim 10^8$

Mutual Friction Force \mathbf{F}_{ns} 0000000 Classical modeling of F_{ns}

F_{ns}: *fully coupled* local model: shortcomings

- mismatch $\langle \mathbf{v}_n \rangle_{\Delta \gg \ell}$ and $\mathbf{v}_n(\mathbf{x}, t)_{\delta < \ell}$
 - \Rightarrow re-determination the friction coefficients
- friction coefficients are recalculations of Δ ≫ ℓ
 (α, α') [Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 204 (1956)]
 ↓
 (D, D_t) [Idowu et al., J Low temp Phys 120, 269 (2000)]
- Numerics: low parallelisation
 - $\mathbf{v}_n(\mathbf{x}, t)$ on 128³ grid
 - $N_p \sim 5 \times 10^4$

small range of scales ! $D/a_0 \sim 10^8$

Mutual Friction Force \mathbf{F}_{ns} 0000000

F_{ns}: *fully coupled* local model: shortcomings

- mismatch $\langle \mathbf{v}_n \rangle_{\Delta \gg \ell}$ and $\mathbf{v}_n(\mathbf{x}, t)_{\delta < \ell}$
 - \Rightarrow re-determination the friction coefficients
- friction coefficients are recalculations of Δ ≫ ℓ
 (α, α') [Hall & Vinen, Proc. Roy. Soc. Lond. A 238, 204 (1956)]
 ↓
 (D, D_t) [Idowu et al., J Low temp Phys 120, 269 (2000)]
- Numerics: low parallelisation
 - $\mathbf{v}_n(\mathbf{x}, t)$ on 128³ grid
 - $N_p \sim 5 \times 10^4$

small range of scales !

 $D/a_0\sim 10^8$

Mutual Friction Force \mathbf{F}_n 00000000 Results

Overview

2 Mutual Friction Force F_{ns}

3 Classical modeling of \mathbf{F}_{ns}

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

Results

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ● ●

FOUCAULT

FOUCAULT

Fully cOUpled loCAl model of sUperfLuid Turbulence

- more *realistic* classical model of \mathbf{F}_{ns}
- distribution of F_{ns} on v_n grid points physically motivated
- higher parallelisation solve wider range of scales

USE tools from Classical Turbulence

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

Results

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ● ●

FOUCAULT

FOUCAULT

Fully cOUpled loCAl model of sUperfLuid Turbulence

- more *realistic* classical model of \mathbf{F}_{ns}
- distribution of F_{ns} on v_n grid points physically motivated
- higher parallelisation solve wider range of scales

USE tools from Classical Turbulence

Mutual Friction Force \mathbf{F}_n

Classical modeling of \mathbf{F}_{ns}

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics

[Kivotides, Phys. Rev. Fl. 3, 104701 (2018)]

•
$$\mathbf{f}_{ns} \propto (\dot{\mathbf{s}} - \mathbf{v}_n) \sim$$
 Stokes drag
• vortex locally ~ cylinder

•
$$\delta/a_0 \sim 10^4 \div 10^5$$

• Re= $\frac{|\dot{\mathbf{s}} - \mathbf{v}_n|a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_{ns} = D \left(\dot{\mathbf{s}} - \mathbf{v}_n \right)$$

•
$$\boldsymbol{D} = \frac{4\pi\rho_n v_n}{\left[\frac{1}{2} - \gamma - \ln\left(\frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n}\right)\right]}$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \beta \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \beta' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n_\perp} - \mathbf{s}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Mutual Friction Force \mathbf{F}_n

Classical modeling of \mathbf{F}_{ns}

F_{ns}: *fully coupled* local model

• classical, low-Reynolds fluid dynamics

[Kivotides, Phys. Rev. Fl. 3, 104701 (2018)]

•
$$\mathbf{f}_{ns} \propto (\dot{\mathbf{s}} - \mathbf{v}_n) \sim \text{Stokes drag}$$

•
$$\delta/a_0 \sim 10^4 \div 10^5$$

• Re= $\frac{|\dot{\mathbf{s}} - \mathbf{v}_n|a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_{ns} = D \left(\dot{\mathbf{s}} - \mathbf{v}_n \right)$$

•
$$D = \frac{4\pi\rho_n v_n}{\left[\frac{1}{2} - \gamma - \ln\left(\frac{|\mathbf{v}_{n_\perp} - \dot{\mathbf{s}}|a_0}{4v_n}\right)\right]}$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n_\perp} - \dot{\mathbf{s}}| a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Mutual Friction Force \mathbf{F}_n

Classical modeling of \mathbf{F}_{ns}

F_{ns}: *fully coupled* local model

classical, low-Reynolds fluid dynamics

[Kivotides, Phys. Rev. Fl. 3, 104701 (2018)]

•
$$\mathbf{f}_{ns} \propto (\dot{\mathbf{s}} - \mathbf{v}_n) \sim \text{Stokes drag}$$

• vortex locally \sim cylinder

•
$$\delta/a_0 \sim 10^4 \div 10^5$$

• Re= $\frac{|\dot{\mathbf{s}} - \mathbf{v}_n|a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_{ns} = D\left(\dot{\mathbf{s}} - \mathbf{v}_n\right)$$

•
$$D = \frac{4\pi\rho_n v_n}{\left[\frac{1}{2} - \gamma - \ln\left(\frac{|\mathbf{v}_{n_\perp} - \dot{\mathbf{s}}|a_0}{4v_n}\right)\right]}$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , Eur. Phys. J. Plus **135**, 547 (2020)

・ ロ ト ・ 雪 ト ・ 目 ト ・ 目 ・

Mutual Friction Force \mathbf{F}_n

F_{ns}: *fully coupled* local model

classical, low-Reynolds fluid dynamics

[Kivotides, Phys. Rev. Fl. 3, 104701 (2018)]

- $\mathbf{f}_{ns} \propto (\dot{\mathbf{s}} \mathbf{v}_n) \sim \text{Stokes drag}$
- vortex locally \sim cylinder
- $\delta/a_0 \sim 10^4 \div 10^5$

• Re=
$$\frac{|\dot{\mathbf{s}} - \mathbf{v}_n|a_0}{v_n} \sim 10^{-5} \div 10^{-4}$$

•
$$\mathbf{f}_{ns} = D \left(\dot{\mathbf{s}} - \mathbf{v}_n \right)$$

•
$$D = \frac{4\pi\rho_n v_n}{\left[\frac{1}{2} - \gamma - \ln\left(\frac{|\mathbf{v}_{n_\perp} - \dot{\mathbf{s}}|a_0}{4v_n}\right)\right]}$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

・ロト ・個ト ・ヨト ・ヨト ・ヨー

Mutual Friction Force \mathbf{F}_n

Classical modeling of \mathbf{F}_{ns}

F_{ns}: *fully coupled* local model

classical, low-Reynolds fluid dynamics

[Kivotides, Phys. Rev. Fl. 3, 104701 (2018)]

•
$$\mathbf{f}_{ns} \propto (\dot{\mathbf{s}} - \mathbf{v}_n) \sim \text{Stokes drag}$$

• vortex locally ~ cylinder

•
$$\delta/a_0 \sim 10^4 \div 10^5$$

• Re= $\frac{|\dot{\mathbf{s}} - \mathbf{v}_n|a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_{ns} = D \left(\dot{\mathbf{s}} - \mathbf{v}_n \right)$$

•
$$D = \frac{4\pi\rho_n v_n}{\left[\frac{1}{2} - \gamma - \ln\left(\frac{|\mathbf{v}_{n_\perp} - \dot{\mathbf{s}}|a_0}{4v_n}\right)\right]}$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

・ロト ・個ト ・ヨト ・ヨト ・ヨー

Mutual Friction Force \mathbf{F}_n

Classical modeling of \mathbf{F}_{ns}

F_{ns}: *fully coupled* local model

classical, low-Reynolds fluid dynamics

[Kivotides, Phys. Rev. Fl. 3, 104701 (2018)]

•
$$\mathbf{f}_{ns} \propto (\dot{\mathbf{s}} - \mathbf{v}_n) \sim \text{Stokes drag}$$

• vortex locally \sim cylinder

•
$$\delta/a_0 \sim 10^4 \div 10^5$$

• Re= $\frac{|\dot{\mathbf{s}} - \mathbf{v}_n|a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_{ns} = D \left(\dot{\mathbf{s}} - \mathbf{v}_n \right)$$

•
$$\mathbf{D} = \frac{4\pi\rho_n v_n}{\left[\frac{1}{2} - \gamma - \ln\left(\frac{|\mathbf{v}_{n_\perp} - \dot{\mathbf{s}}|a_0}{4v_n}\right)\right]}$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \beta \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \beta' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

• $\frac{\rho_n}{\rho_n}$, $\frac{\kappa}{\rho_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n_\perp} - \dot{\mathbf{s}}| a_0}{\rho_n}$

LG, CFB, AWB, GK , Eur. Phys. J. Plus **135**, 547 (2020)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Mutual Friction Force \mathbf{F}_n

Classical modeling of \mathbf{F}_{ns}

F_{ns}: *fully coupled* local model

classical, low-Reynolds fluid dynamics

[Kivotides, Phys. Rev. Fl. 3, 104701 (2018)]

•
$$\mathbf{f}_{ns} \propto (\dot{\mathbf{s}} - \mathbf{v}_n) \sim \text{Stokes drag}$$

• vortex locally \sim cylinder

•
$$\delta/a_0 \sim 10^4 \div 10^5$$

• Re= $\frac{|\dot{\mathbf{s}} - \mathbf{v}_n|a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_{ns} = D \left(\dot{\mathbf{s}} - \mathbf{v}_n \right)$$

•
$$D = \frac{4\pi\rho_n v_n}{\left[\frac{1}{2} - \gamma - \ln\left(\frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n}\right)\right]}$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{v_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{v_n}$

LG, CFB, AWB, GK , *Eur. Phys. J. Plus* **135**, 547 (2020)

・ロト・一部・・ヨト・ヨト ヨー うらつ

Mutual Friction Force \mathbf{F}_n

Classical modeling of F_{ns}

F_{ns}: *fully coupled* local model

classical, low-Reynolds fluid dynamics

[Kivotides, Phys. Rev. Fl. 3, 104701 (2018)]

•
$$\mathbf{f}_{ns} \propto (\dot{\mathbf{s}} - \mathbf{v}_n) \sim \text{Stokes drag}$$

• vortex locally ~ cylinder

•
$$\delta/a_0 \sim 10^4 \div 10^5$$

• Re= $\frac{|\dot{\mathbf{s}} - \mathbf{v}_n|a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_{ns} = D \left(\dot{\mathbf{s}} - \mathbf{v}_n \right)$$

•
$$D = \frac{4\pi\rho_n v_n}{\left[\frac{1}{2} - \gamma - \ln\left(\frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{4v_n}\right)\right]}$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

• $\frac{\rho_n}{\rho_s}$, $\frac{\kappa}{\nu_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n\perp} - \dot{\mathbf{s}}|a_0}{\nu_n}$

LG, CFB, AWB, GK , Eur. Phys. J. Plus **135**, 547 (2020)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

Mutual Friction Force \mathbf{F}_n

Classical modeling of F_{ns}

F_{ns}: *fully coupled* local model

classical, low-Reynolds fluid dynamics

[Kivotides, Phys. Rev. Fl. 3, 104701 (2018)]

•
$$\mathbf{f}_{ns} \propto (\dot{\mathbf{s}} - \mathbf{v}_n) \sim \text{Stokes drag}$$

• vortex locally \sim cylinder

•
$$\delta/a_0 \sim 10^4 \div 10^5$$

• Re= $\frac{|\dot{\mathbf{s}} - \mathbf{v}_n|a_0}{v_n} \sim 10^{-5} \div 10^{-4}$

•
$$\mathbf{f}_{ns} = D \left(\dot{\mathbf{s}} - \mathbf{v}_n \right)$$

•
$$D = \frac{4\pi\rho_n v_n}{\left[\frac{1}{2} - \gamma - \ln\left(\frac{|\mathbf{v}_n - \dot{\mathbf{s}}|a_0}{4v_n}\right)\right]}$$

•
$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

•
$$\frac{\rho_n}{\rho_s}$$
, $\frac{\kappa}{\nu_n}$, $\operatorname{Re}_n = \frac{|\mathbf{v}_{n_\perp} - \dot{\mathbf{s}}|a_0}{\nu_n}$

LG, CFB, AWB, GK , Eur. Phys. J. Plus **135**, 547 (2020)

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Mutual Friction Force \mathbf{F}_n 0000000 Classical modeling of F_{ns}

F_{ns}: *fully coupled* local model

• $\mathbf{v}_n(\mathbf{x}, t)$ self-consistently with NS Eqs. + tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_n}$

$$\rho_n \left[\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n \right] = -\frac{\rho_n}{\rho} \nabla p + \eta \nabla^2 \mathbf{v}_n + \oint_{\mathscr{L}} \delta(\mathbf{x} - \mathbf{s}) \mathbf{f}_{ns}(\mathbf{s}) d\xi ,$$

$$\nabla \cdot \mathbf{v}_n = 0$$

Mutual Friction Force **F**_{ns}

F_{ns}: *fully coupled* local model

• $\mathbf{v}_n(\mathbf{x}, t)$ self-consistently with NS Eqs. + tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$

$$\rho_n \left[\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n \right] = -\frac{\rho_n}{\rho} \nabla p + \eta \nabla^2 \mathbf{v}_n + \sum_{i=1,\dots,N_p} \delta[\mathbf{x} - \mathbf{s}_i(t)] \mathbf{f}_{ns}^i(t) \delta_i ,$$

$$\nabla \cdot \mathbf{v}_n = 0$$

*W*ζ,μ,χ

•
$$\sum_{\zeta,\mu,\chi=0}^{1} w_{\zeta,\mu,\chi} = 1$$

- nearest neighbours tri-linear extrapolation
- Filtering
 - moving avg N_{filter} points
 - Gaussian kernel

$$\sigma = N_{filter} \Delta x$$

Mutual Friction Force **F**_{ns}

F_{ns}: *fully coupled* local model

• $\mathbf{v}_n(\mathbf{x}, t)$ self-consistently with NS Eqs. + tangle $\{\mathbf{s}_i(t)\}_{i=1,\dots,N_p}$

$$\rho_n \left[\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n \right] = -\frac{\rho_n}{\rho} \nabla p + \eta \nabla^2 \mathbf{v}_n + \sum_{i=1,\dots,N_p} \delta[\mathbf{x} - \mathbf{s}_i(t)] \mathbf{f}_{ns}^i(t) \delta_i ,$$

$$\nabla \cdot \mathbf{v}_n = 0$$

- $w_{\zeta,\mu,\chi}$ • $\sum_{\zeta,\mu,\chi=0}^{1} w_{\zeta,\mu,\chi} = 1$
- nearest neighbours tri-linear extrapolation
- Filtering
 - moving avg N_{filter} points
 - Gaussian kernel

$$\sigma = N_{filter} \Delta x$$

Mutual Friction Force \mathbf{F}_n

 Results

F_{ns}: *fully coupled* local model

- single vortex ring $R_0 = 4 \times 10^{-3}$ cm
- initially quiescent normal fluid
- shrinking vortex dynamics

SPURIOUS!

Mutual Friction Force \mathbf{F}_n

 Results

F_{ns}: *fully coupled* local model

- single vortex ring $R_0 = 4 \times 10^{-3}$ cm
- initially quiescent normal fluid
- shrinking vortex dynamics

Mutual Friction Force Fns

Classical modeling of Fns Results

F_{ns}: fully coupled local model

- physically consistent regularisation
- active matter systems strongly localised response of point-like agents
 - particles (PIV, PTV)
 - bacteria
 - swimmers

[Gualtieri et al., J Fluid Mech 773, 520 (2015)] [Gualtieri et al., Phys Rev Fl 2, 034304 (2017)]

- Re~ $10^{-4} \div 10^{-5}$
- generation localised vorticity ω_n
- diffused by viscosity v_n [LG et al., Eur. Phys. J. Plus 135, 547 (2020)]

Mutual Friction Force Fns 00000000 Classical modeling of F_{ns}

F_{ns}: generation and diffusion of vorticity by a vortex

$$\frac{\partial \mathbf{v}}{\partial t} - v\nabla^2 \mathbf{v} = -\frac{1}{\rho}\nabla p + F\delta(\mathbf{x} - \mathbf{x}_0)\delta(t - \tau)\hat{\mathbf{e}}_x$$

$$\frac{\partial \boldsymbol{\omega}}{\partial t} - \boldsymbol{v} \nabla^2 \boldsymbol{\omega} = \delta(t - \tau) \nabla \delta(\mathbf{x} - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$\boldsymbol{\omega}(\mathbf{x},t) = \int d\mathbf{x}' \int dt' g[\mathbf{x} - \mathbf{x}', t - t'] \,\delta(t' - \tau) \,\nabla' \delta(\mathbf{x}' - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$g[\mathbf{x} - \mathbf{x}', t - t'] = \frac{1}{[4\pi\nu(t - t')]^{3/2}} e^{-\frac{|\mathbf{x} - \mathbf{x}'|^2}{4\nu(t - t')}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Mutual Friction Force F_{ns} 00000000 Classical modeling of F_{ns}

F_{ns}: generation and diffusion of vorticity by a vortex

$$\frac{\partial \mathbf{v}}{\partial t} - v\nabla^2 \mathbf{v} = -\frac{1}{\rho}\nabla p + F\delta(\mathbf{x} - \mathbf{x}_0)\delta(t - \tau)\hat{\mathbf{e}}_x$$

$$\frac{\partial \boldsymbol{\omega}}{\partial t} - \boldsymbol{v} \nabla^2 \boldsymbol{\omega} = \delta(t - \tau) \nabla \delta(\mathbf{x} - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$\boldsymbol{\omega}(\mathbf{x},t) = \int d\mathbf{x}' \int dt' g[\mathbf{x} - \mathbf{x}', t - t'] \,\delta(t' - \tau) \,\nabla' \delta(\mathbf{x}' - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$g[\mathbf{x} - \mathbf{x}', t - t'] = \frac{1}{[4\pi\nu(t - t')]^{3/2}} e^{-\frac{|\mathbf{x} - \mathbf{x}'|^2}{4\nu(t - t')}}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

Mutual Friction Force F_{ns} 00000000 Classical modeling of F_{ns}

F_{*ns*}: generation and diffusion of vorticity by a vortex

$$V_{n}(\underline{x}, \underline{t} = 0) \qquad t = 2$$

$$V_{n}(\underline{x}, \underline{t} = 0) \qquad f = F\hat{a}$$

$$Y_{n}(\underline{x}, \underline{t} = 0) \qquad f = F\hat{a}$$

$$\frac{\partial \mathbf{v}}{\partial t} - v \nabla^2 \mathbf{v} = -\frac{1}{\rho} \nabla p + F \delta(\mathbf{x} - \mathbf{x}_0) \delta(t - \tau) \hat{\mathbf{e}}_x$$

$$\frac{\partial \boldsymbol{\omega}}{\partial t} - v \nabla^2 \boldsymbol{\omega} = \delta(t - \tau) \nabla \delta(\mathbf{x} - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$\boldsymbol{\omega}(\mathbf{x},t) = \int d\mathbf{x}' \int dt' g[\mathbf{x} - \mathbf{x}', t - t'] \,\delta(t' - \tau) \,\nabla' \delta(\mathbf{x}' - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$g[\mathbf{x} - \mathbf{x}', t - t'] = \frac{1}{[4\pi\nu(t - t')]^{3/2}} e^{-\frac{|\mathbf{x} - \mathbf{x}'|^2}{4\nu(t - t')}}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Mutual Friction Force **F**_{ns}

~

Classical modeling of F_{ns}

F_{*ns*}: generation and diffusion of vorticity by a vortex

$$\frac{V_{n}(x,t)=0}{\sum_{x}} F = F \hat{a}$$

$$\frac{\partial \mathbf{v}}{\partial t} - v \nabla^2 \mathbf{v} = -\frac{1}{\rho} \nabla p + F \delta(\mathbf{x} - \mathbf{x}_0) \delta(t - \tau) \hat{\mathbf{e}}_x$$

$$\frac{\partial \boldsymbol{\omega}}{\partial t} - v \nabla^2 \boldsymbol{\omega} = \delta(t - \tau) \nabla \delta(\mathbf{x} - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$\boldsymbol{\omega}(\mathbf{x},t) = \int d\mathbf{x}' \int dt' g[\mathbf{x} - \mathbf{x}', t - t'] \,\delta(t' - \tau) \,\nabla' \delta(\mathbf{x}' - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$g[\mathbf{x} - \mathbf{x}', t - t'] = \frac{1}{[4\pi\nu(t - t')]^{3/2}} e^{-\frac{|\mathbf{x} - \mathbf{x}'|^2}{4\nu(t - t')}}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Mutual Friction Force **F**_{ns}

~

Classical modeling of F_{ns}

F_{*ns*}: generation and diffusion of vorticity by a vortex

$$\frac{V_{n}(x,t)=0}{\sum_{x}} F = F \hat{a}$$

$$\frac{\partial \mathbf{v}}{\partial t} - v \nabla^2 \mathbf{v} = -\frac{1}{\rho} \nabla p + F \delta(\mathbf{x} - \mathbf{x}_0) \delta(t - \tau) \hat{\mathbf{e}}_x$$

$$\frac{\partial \boldsymbol{\omega}}{\partial t} - v \nabla^2 \boldsymbol{\omega} = \delta(t - \tau) \nabla \delta(\mathbf{x} - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$\boldsymbol{\omega}(\mathbf{x},t) = \int d\mathbf{x}' \int dt' g[\mathbf{x} - \mathbf{x}', t - t'] \,\delta(t' - \tau) \,\nabla' \delta(\mathbf{x}' - \mathbf{x}_0) \times (F \hat{\mathbf{e}}_x)$$

$$g[\mathbf{x} - \mathbf{x}', t - t'] = \frac{1}{[4\pi\nu(t - t')]^{3/2}} e^{-\frac{|\mathbf{x} - \mathbf{x}'|^2}{4\nu(t - t')}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

Mutual Friction Force Fn: 00000000 Classical modeling of F_{ns}

Results

\mathbf{F}_{ns} : generation and diffusion of vorticity by a vortex

$$\boldsymbol{\omega}(\mathbf{x},t) = F \,\hat{\mathbf{e}}_x \times \nabla' g[\mathbf{x} - \mathbf{x}', t - \tau] \Big|_{\mathbf{x}' = \mathbf{x}_0} ,$$

$$\boldsymbol{\omega}(\mathbf{x},t) = \frac{2\pi F}{[4\pi\nu(t-\tau)]^{5/2}} e^{-\frac{|\mathbf{x}-\mathbf{x}_0|^2}{4\nu(t-\tau)}} \left[\hat{\mathbf{e}}_x \times (\mathbf{x}-\mathbf{x}_0) \right] ,$$

$$\omega_z(x, y, t) = \frac{2\pi F}{(4\pi\nu)^{5/2}} y e^{-\frac{x^2+y^2}{4\nu t}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

Mutual Friction Force \mathbf{F}_{ns} 00000000 Classical modeling of F_{ns}

Results

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

F_{*ns*}: generation and diffusion of vorticity by a vortex

$$V_{n}(\underline{x},t)=0 \qquad t=1$$

$$\boldsymbol{\omega}(\mathbf{x},t) = F \hat{\mathbf{e}}_{x} \times \nabla' g[\mathbf{x} - \mathbf{x}', t - \tau] \Big|_{\mathbf{x}' = \mathbf{x}_{0}},$$

$$\boldsymbol{\omega}(\mathbf{x},t) = \frac{2\pi F}{[4\pi\nu(t-\tau)]^{5/2}} e^{-\frac{|\mathbf{x}-\mathbf{x}_0|^2}{4\nu(t-\tau)}} \left[\hat{\mathbf{e}}_x \times (\mathbf{x}-\mathbf{x}_0) \right] ,$$

$$\omega_z(x, y, t) = \frac{2\pi F}{(4\pi\nu)^{5/2}} y e^{-\frac{x^2+y^2}{4\nu t}}$$

Mutual Friction Force \mathbf{F}_{ns} 00000000 Classical modeling of F_{ns}

Results

F_{*ns*}: generation and diffusion of vorticity by a vortex

$$V_{\mathbf{h}}(\mathbf{x},\mathbf{t})=0 \qquad t=1$$

$$\boldsymbol{\omega}(\mathbf{x},t) = F \hat{\mathbf{e}}_{x} \times \nabla' g[\mathbf{x} - \mathbf{x}', t - \tau] \Big|_{\mathbf{x}' = \mathbf{x}_{0}},$$

$$\boldsymbol{\omega}(\mathbf{x},t) = \frac{2\pi F}{[4\pi\nu(t-\tau)]^{5/2}} e^{-\frac{|\mathbf{x}-\mathbf{x}_0|^2}{4\nu(t-\tau)}} \left[\hat{\mathbf{e}}_x \times (\mathbf{x}-\mathbf{x}_0) \right] ,$$

$$\omega_z(x, y, t) = \frac{2\pi F}{(4\pi v)^{5/2}} y e^{-\frac{x^2 + y^2}{4vt}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 のへで

Mutual Friction Force \mathbf{F}_{ns} 00000000 Classical modeling of F_{ns}

Results

\mathbf{F}_{ns} : generation and diffusion of vorticity by a vortex

$$\boldsymbol{\omega}(\mathbf{x},t) = F \hat{\mathbf{e}}_{x} \times \nabla' g[\mathbf{x} - \mathbf{x}', t - \tau] \Big|_{\mathbf{x}' = \mathbf{x}_{0}},$$

$$\boldsymbol{\omega}(\mathbf{x},t) = = \frac{2\pi F}{[4\pi\nu(t-\tau)]^{5/2}} e^{-\frac{|\mathbf{x}-\mathbf{x}_0|^2}{4\nu(t-\tau)}} \left[\hat{\mathbf{e}}_x \times (\mathbf{x}-\mathbf{x}_0) \right] ,$$

$$\omega_z(x, y, t) = \frac{2\pi F}{(4\pi v)^{5/2}} y e^{-\frac{x^2 + y^2}{4vt}}$$

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

Mutual Friction Force \mathbf{F}_{ns} 00000000 Classical modeling of Fns

F_{ns}: generation and diffusion of vorticity by a vortex

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○
Mutual Friction Force F_{ns} 00000000

F_{ns}: generation and diffusion of vorticity by a vortex

Mutual Friction Force F_{ns} 00000000

F_{ns}: generation and diffusion of vorticity by a vortex

Mutual Friction Force \mathbf{F}_{ns} 00000000 Results

\mathbf{F}_{ns} : generation and diffusion of vorticity by a vortex

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Mutual Friction Force \mathbf{F}_{ns} 00000000 Results

\mathbf{F}_{ns} : generation and diffusion of vorticity by a vortex

・ロト・日本・日本・日本・日本・

Mutual Friction Force \mathbf{F}_{ns} 00000000 Results

F_{ns}: generation and diffusion of vorticity by a vortex

・ロト・日本・モート ヨー シタウ

Mutual Friction Force \mathbf{F}_{ns} 00000000 Results

\mathbf{F}_{ns} : generation and diffusion of vorticity by a vortex

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Mutual Friction Force \mathbf{F}_{ns}

Classical modeling of **F**_{ns}

Results

\mathbf{F}_{ns} : generation and diffusion of vorticity by a vortex

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Mutual Friction Force \mathbf{F}_{ns} 00000000 Results

F_{ns}: generation and diffusion of vorticity by a vortex

・ロト・日本・日本・日本・日本・

Mutual Friction Force \mathbf{F}_{ns} 00000000 Results

\mathbf{F}_{ns} : generation and diffusion of vorticity by a vortex

Mutual Friction Force Fns 00000000 Classical modeling of F_{ns}

F_{*ns*}: Regularisation

• introduce time delay ϵ_R : diffusion time $\omega_n \rightarrow \Delta x$

$$\sigma_R = \sqrt{2\nu_n \epsilon_R} = \Delta x$$

•
$$\mathbf{f}_{ns}^{i}(t)\delta(\mathbf{x}-\mathbf{s}_{i}(t))$$

 \Downarrow

•
$$\mathbf{f}_{ns}^{i}(t-\epsilon_{R})g[\mathbf{x}-\mathbf{s}_{i}(t-\epsilon_{R}),\epsilon_{R}]$$

•
$$g[\mathbf{x} - \mathbf{s}_i(t - \epsilon_R), \epsilon_R] =$$

$$\frac{1}{(4\pi\nu_n\epsilon_R)^{3/2}}\exp\left[-\frac{||\mathbf{x}-\mathbf{s}_i(t-\epsilon_R)||^2}{4\nu_n\epsilon_R}\right]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = -\frac{1}{\rho} \nabla p + v_n \nabla^2 \mathbf{v}_n + \frac{1}{\rho_n} \sum_{i=1}^{N_p} \mathbf{f}_{ns}^i (t - \epsilon_R) g[\mathbf{x} - \mathbf{s}_i (t - \epsilon_R), \epsilon_R] \delta_i$$

Mutual Friction Force F_{ns}

Classical modeling of F_{ns}

F_{*ns*}: Regularisation

• introduce time delay ϵ_R : diffusion time $\omega_n \rightarrow \Delta x$

$$\sigma_R = \sqrt{2\nu_n \epsilon_R} = \Delta x$$

•
$$\mathbf{f}_{ns}^{i}(t)\delta(\mathbf{x}-\mathbf{s}_{i}(t))$$

 \Downarrow

•
$$\mathbf{f}_{ns}^{i}(t-\epsilon_{R})g[\mathbf{x}-\mathbf{s}_{i}(t-\epsilon_{R}),\epsilon_{R}]$$

•
$$g[\mathbf{x} - \mathbf{s}_i(t - \epsilon_R), \epsilon_R] =$$

$$\frac{1}{(4\pi\nu_n\epsilon_R)^{3/2}}\exp\left[-\frac{||\mathbf{x}-\mathbf{s}_i(t-\epsilon_R)||^2}{4\nu_n\epsilon_R}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

$$\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \,\mathbf{v}_n = -\frac{1}{\rho} \nabla p + v_n \nabla^2 \mathbf{v}_n + \frac{1}{\rho_n} \sum_{i=1}^{N_p} \mathbf{f}_{ns}^i(t - \epsilon_R) g[\mathbf{x} - \mathbf{s}_i(t - \epsilon_R), \epsilon_R] \delta_i$$

Mutual Friction Force Fns 00000000 Classical modeling of F_{ns}

F_{ns}: Regularisation

• introduce time delay ϵ_R : diffusion time $\omega_n \rightarrow \Delta x$

$$\sigma_R = \sqrt{2\nu_n \epsilon_R} = \Delta x$$

•
$$\mathbf{f}_{ns}^{i}(t)\delta(\mathbf{x}-\mathbf{s}_{i}(t))$$

 \Downarrow

•
$$\mathbf{f}_{ns}^{i}(t-\epsilon_{R})g[\mathbf{x}-\mathbf{s}_{i}(t-\epsilon_{R}),\epsilon_{R}]$$

•
$$g[\mathbf{x} - \mathbf{s}_i(t - \epsilon_R), \epsilon_R] =$$

$$\frac{1}{(4\pi\nu_n\epsilon_R)^{3/2}}\exp\left[-\frac{||\mathbf{x}-\mathbf{s}_i(t-\epsilon_R)||^2}{4\nu_n\epsilon_R}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

$$\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = -\frac{1}{\rho} \nabla p + v_n \nabla^2 \mathbf{v}_n + \frac{1}{\rho_n} \sum_{i=1}^{N_p} \mathbf{f}_{ns}^i(t - \epsilon_R) g[\mathbf{x} - \mathbf{s}_i(t - \epsilon_R), \epsilon_R] \delta_i$$

Mutual Friction Force Fns 00000000 Classical modeling of F_{ns}

Results

F_{ns}: Regularisation

• introduce time delay ϵ_R : diffusion time $\omega_n \rightarrow \Delta x$

$$\sigma_R = \sqrt{2\nu_n \epsilon_R} = \Delta x$$

•
$$\mathbf{f}_{ns}^{i}(t)\delta(\mathbf{x}-\mathbf{s}_{i}(t))$$

 \Downarrow

•
$$\mathbf{f}_{ns}^{i}(t-\epsilon_{R})g[\mathbf{x}-\mathbf{s}_{i}(t-\epsilon_{R}),\epsilon_{R}]$$

•
$$g[\mathbf{x} - \mathbf{s}_i(t - \epsilon_R), \epsilon_R] =$$

 $\frac{1}{(4\pi\nu_n\epsilon_R)^{3/2}} \exp\left[-\frac{||\mathbf{x} - \mathbf{s}_i(t - \epsilon_R)||^2}{4\nu_n\epsilon_R}\right]$

$$\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = -\frac{1}{\rho} \nabla p + v_n \nabla^2 \mathbf{v}_n + \frac{1}{\rho_n} \sum_{i=1}^{N_p} \mathbf{f}_{ns}^i (t - \epsilon_R) g[\mathbf{x} - \mathbf{s}_i (t - \epsilon_R), \epsilon_R] \delta_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Mutual Friction Force \mathbf{F}_n 0000000 Classical modeling of \mathbf{F}_{ns}

F_{ns}: Regularisation, weights

$$\begin{split} & w_{\zeta,\mu,\chi} = w_{\zeta}[s_i^x] w_{\mu}[s_i^y] w_{\chi}[s_i^z] \ , \\ & w_{\zeta}[s_i^x] = \zeta + (1 - 2\zeta) \frac{1}{2} \left(1 + Erf\left[-\frac{\tilde{s}_i^x - \frac{1}{2}}{\sqrt{2}(\sigma_R/\Delta x)} \right] \right) \ , \\ & \tilde{s}_i^x = \frac{s_i^x - \lfloor s_i^x \rfloor}{\Delta x} \in [0,1] \end{split}$$

・ロト・日本・日本・日本・日本・今日で

Mutual Friction Force F_{ns}

Classical modeling of F_{ns}

Numerical Architecture

- $\mathbf{v}_n(\mathbf{x}, t)$ on 512³
- past: 128³ (40³)
- $N_p \sim 2 \times 10^5$
- wider range of scales

ヘロト ヘ回ト ヘヨト ヘヨト

Mutual Friction Force F_{ns}

Classical modeling of F_{ns}

Results

Numerical Architecture

- $\mathbf{v}_n(\mathbf{x}, t)$ on 512^3
- past: 128³ (40³)
- $N_p \sim 2 \times 10^5$
- wider range of scales

Mutual Friction Force F_{ns}

Classical modeling of F_{ns}

Numerical Architecture

- $\mathbf{v}_n(\mathbf{x}, t)$ on 512^3
- past: 128³ (40³)
- $N_p \sim 2 \times 10^5$
- wider range of scales

Introduction
0000000

Mutual Friction Force \mathbf{F}_n

Classical modeling of F*ns*

Results ••••••••

Overview

2 Mutual Friction Force **F**_{ns}

3 Classical modeling of F_{ns}

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Mutual Friction Force **F**_{ns}

Classical modeling of **F***ns*

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Shrinking vortex ring in quiescent normal fluid

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]

• shorter lifetime as *T* increases

- larger lifetime compared to 1-way coupling [Schwarz, *Phys. Rev. B* 18, 245 (1978)]
- dipole size ~ $5\mu m$ ~ size of particles

Mutual Friction Force F_{ns} 00000000 Classical modeling of **F***ns*

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

Shrinking vortex ring in quiescent normal fluid

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]

- shorter lifetime as *T* increases
- larger lifetime compared to 1-way coupling [Schwarz, *Phys. Rev. B* 18, 245 (1978)]
- dipole size ~ $5\mu m$ ~ size of particles

Mutual Friction Force **F**_{ns}

Classical modeling of **F***ns*

・ロト・一部・・ヨト・ヨト ヨー うらつ

Shrinking vortex ring in quiescent normal fluid

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]

- shorter lifetime as *T* increases
- larger lifetime compared to 1-way coupling [Schwarz, *Phys. Rev. B* 18, 245 (1978)]
- dipole size ~ $5\mu m$ ~ size of particles

Mutual Friction Force F_{ns} 00000000

Shrinking vortex ring in quiescent normal fluid

$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

• 2-way coupling plays a fundamental role

Mutual Friction Force F_{ns} 00000000

Shrinking vortex ring in quiescent normal fluid

$$\dot{\mathbf{s}} = \mathbf{v}_s + \boldsymbol{\beta} \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s) + \boldsymbol{\beta}' \mathbf{s}' \times \mathbf{s}' \times (\mathbf{v}_n - \mathbf{v}_s)$$

• 2-way coupling plays a fundamental role

Mutual Friction Force F_{ns} 00000000 Classical modeling of F_{ns}

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Shrinking vortex ring in quiescent normal fluid

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]

• velocity wake

- important for statistics of particles
 - $PDF(v_p)$, $PDF(a_p)$
 - Lagrangian velocity correlations
- consistent with experiments [Tang et al. Nat Comm 14, 2941 (2023)]

Mutual Friction Force F_{ns}

Classical modeling of F_{ns}

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Shrinking vortex ring in quiescent normal fluid

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]

- velocity wake
- important for statistics of particles
 - $PDF(v_p)$, $PDF(a_p)$
 - Lagrangian velocity correlations
- consistent with experiments [Tang et al. Nat Comm 14, 2941 (2023)]

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

・ロト・一部・・ヨト・ヨト ヨー うらつ

Shrinking vortex ring in quiescent normal fluid

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]

- velocity wake
- important for statistics of particles
 - $PDF(v_p)$, $PDF(a_p)$
 - Lagrangian velocity correlations
- consistent with experiments [Tang et al. Nat Comm 14, 2941 (2023)]

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

Results

Experiments: Toroidal vortex bundle

• Borner experiments

- [Borner *et al.*, *Phys B* **108**, 1123 (1981)]
- [Borner et al., Phys. Fluids 26, 1410 (1983)]
- [Borner *et al.*, Lect Not Phys **235**, 135 (1985)]
- large-scale vortex rings in He II
- travelled long distance > 20*R*
- indipendent of T (friction)
- 1-way coupling model ~ 2R ÷ 8R
 Temperature dependent

 $R \sim 0.5 {\rm cm}$, $a \sim 0.12 {\rm cm}$ $N \sim 2000$, $\ell \sim 4 \times 10^{-3} {\rm cm}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

Results

Experiments: Toroidal vortex bundle

• Borner experiments

- [Borner *et al.*, *Phys B* **108**, 1123 (1981)]
- [Borner et al., Phys. Fluids 26, 1410 (1983)]
- [Borner *et al.*, Lect Not Phys **235**, 135 (1985)]

• large-scale vortex rings in He II

- travelled long distance > 20*R*
- indipendent of T (friction)
- 1-way coupling model ~ 2R ÷ 8R
 Temperature dependent

 $R \sim 0.5 {\rm cm}$, $a \sim 0.12 {\rm cm}$ $N \sim 2000$, $\ell \sim 4 \times 10^{-3} {\rm cm}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

Results

Experiments: Toroidal vortex bundle

Borner experiments

- [Borner *et al.*, *Phys B* **108**, 1123 (1981)]
- [Borner et al., Phys. Fluids **26**, 1410 (1983)]
- [Borner *et al.*, Lect Not Phys **235**, 135 (1985)]
- large-scale vortex rings in He II
- travelled long distance > 20R
- indipendent of T (friction)
- 1-way coupling model ~ 2R ÷ 8R
 Temperature dependent

 $R \sim 0.5 {\rm cm}$, $a \sim 0.12 {\rm cm}$ $N \sim 2000$, $\ell \sim 4 \times 10^{-3} {\rm cm}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

Results

Experiments: Toroidal vortex bundle

- Borner experiments
 - [Borner *et al.*, *Phys B* **108**, 1123 (1981)]
 - [Borner et al., Phys. Fluids **26**, 1410 (1983)]
 - [Borner *et al.*, Lect Not Phys **235**, 135 (1985)]
- large-scale vortex rings in He II
- travelled long distance > 20R
- indipendent of T (friction)
- 1-way coupling model ~ 2R ÷ 8R
 Temperature dependent

 $R \sim 0.5 {\rm cm}$, $a \sim 0.12 {\rm cm}$ $N \sim 2000$, $\ell \sim 4 \times 10^{-3} {\rm cm}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mutual Friction Force **F**_{ns}

Results

Experiments: Toroidal vortex bundle

Borner experiments

- [Borner *et al.*, *Phys B* **108**, 1123 (1981)]
- [Borner et al., Phys. Fluids **26**, 1410 (1983)]
- [Borner *et al.*, Lect Not Phys **235**, 135 (1985)]
- large-scale vortex rings in He II
- travelled long distance > 20R
- indipendent of T (friction)
- 1-way coupling model ~ 2R ÷ 8R
 Temperature dependent

 $R\sim 0.5 {\rm cm}$, $a\sim 0.12 {\rm cm}$ $N\sim 2000$, $\ell\sim 4\times 10^{-3} {\rm cm}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mutual Friction Force **F**_{ns}

Classical modeling of **F***ns*

Results

Experiments: Toroidal vortex bundle

• Borner experiments

- [Borner *et al.*, *Phys B* **108**, 1123 (1981)]
- [Borner et al., Phys. Fluids **26**, 1410 (1983)]
- [Borner *et al.*, Lect Not Phys **235**, 135 (1985)]
- large-scale vortex rings in He II
- travelled long distance > 20R
- indipendent of T (friction)
- 1-way coupling model ~ 2R ÷ 8R
 Temperature dependent

 $R \sim 0.5 {\rm cm}$, $a \sim 0.12 {\rm cm}$ $N \sim 2000$, $\ell \sim 4 \times 10^{-3} {\rm cm}$

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ● ●

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

Results

Toroidal vortex bundle: initial conditions

Mutual Friction Force F_{ns}

Classical modeling of F_{ns}

Toroidal vortex bundle: initial conditions

Mutual Friction Force Fns 00000000 Classical modeling of F_{ns}

<ロ> <四> <四> <四> <三</td>

Toroidal vortex bundle: dynamics

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Toroidal vortex bundle: Length

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]
Mutual Friction Force Fns 00000000 Classical modeling of F_{ns}

ヘロト 人間 とく ヨン 人 ヨン

æ

Toroidal vortex bundle: dynamics

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Toroidal vortex bundle: Length

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]

Mutual Friction Force \mathbf{F}_{ns} 0000000 Classical modeling of **F***ns*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Toroidal vortex bundle: Hydrodynamic cooperation

Mutual Friction Force Fns 00000000 Classical modeling of **F***ns*

Toroidal vortex bundle: dynamics

Mutual Friction Force **F**_{ns}

Classical modeling of F_{ns}

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Toroidal vortex bundle: Length

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]

Results

3 Toroidal vortex bundles: different a

Results

3 Toroidal vortex bundles: different a

Mutual Friction Force \mathbf{F}_{ns} 00000000 Classical modeling of **F**_{ns}

Results

3 Toroidal vortex bundles: dissipation reduction χ

superfluid kinetic energy dissipation *e(t)*

 $\epsilon(t) = \oint_{\mathscr{L}} \mathbf{f}_{\rm ns}(\mathbf{s}) \cdot \dot{\mathbf{s}}(\xi, t) \,\mathrm{d}\xi$

• relative dissipation reduction $\chi(t)$

$$g(t) = \frac{\varepsilon(0) - \varepsilon(t)}{\varepsilon(0)}$$

• $\chi(t) > 0$ dissipation reduction

•
$$\chi(t) \to 1 \implies \epsilon(t) \to 0$$

hydrodynamic cooperation!

vortex ring travelling in a quiescent \mathbf{v}_n

Mutual Friction Force **F**_{ns}

Classical modeling of **F**_{ns}

Results

3 Toroidal vortex bundles: dissipation reduction χ

superfluid kinetic energy dissipation *e*(*t*)

 $\epsilon(t) = \oint_{\mathscr{L}} \mathbf{f}_{\rm ns}(\mathbf{s}) \cdot \dot{\mathbf{s}}(\xi, t) \,\mathrm{d}\xi$

• relative dissipation reduction $\chi(t)$

 $\chi(t) = \frac{\epsilon(0) - \epsilon(t)}{\epsilon(0)}$

• $\chi(t) > 0$ dissipation reduction

•
$$\chi(t) \to 1 \Rightarrow \epsilon(t) \to 0$$

hydrodynamic cooperation!

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

= 900

vortex ring travelling in a quiescent \mathbf{v}_r

Mutual Friction Force **F**_{ns}

Classical modeling of **F**_{ns}

Results

3 Toroidal vortex bundles: dissipation reduction χ

superfluid kinetic energy dissipation *e*(*t*)

 $\epsilon(t) = \oint_{\mathscr{L}} \mathbf{f}_{\rm ns}(\mathbf{s}) \cdot \dot{\mathbf{s}}(\xi, t) \,\mathrm{d}\xi$

• relative dissipation reduction $\chi(t)$

 $\chi(t) = \frac{\epsilon(0) - \epsilon(t)}{\epsilon(0)}$

• $\chi(t) > 0$ dissipation reduction

•
$$\chi(t) \to 1 \Rightarrow \epsilon(t) \to 0$$

hydrodynamic cooperation!

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

= 900

vortex ring travelling in a quiescent \mathbf{v}_{κ}

Mutual Friction Force **F**_{ns}

Classical modeling of **F**_{*ns*}

Results

3 Toroidal vortex bundles: dissipation reduction χ

superfluid kinetic energy dissipation *e*(*t*)

 $\epsilon(t) = \oint_{\mathscr{L}} \mathbf{f}_{\rm ns}(\mathbf{s}) \cdot \dot{\mathbf{s}}(\xi, t) \,\mathrm{d}\xi$

• relative dissipation reduction $\chi(t)$

 $\chi(t) = \frac{\epsilon(0) - \epsilon(t)}{\epsilon(0)}$

• $\chi(t) > 0$ dissipation reduction

•
$$\chi(t) \to 1 \Rightarrow \epsilon(t) \to 0$$

hydrodynamic cooperation!

single, isolated vortex ring travelling in a quiescent \mathbf{v}_n

Superfluids as Active Fluids ?

- 1. more than one vortex needed for dissipation reduction
- 2. dissipation reduction more efficient when vortices are closer

superfluid ⁴He is an active fluid hydrodynamic cooperation between superfluid vortices reduce dissipation

- bacterial suspensions
- fungal spores in air
- cyclists in pelotons

Superfluids as Active Fluids ?

- 1. more than one vortex needed for dissipation reduction
- 2. dissipation reduction more efficient when vortices are closer

↓

superfluid ⁴He is an active fluid hydrodynamic cooperation between superfluid vortices reduce dissipation

- bacterial suspensions
- fungal spores in air
- cyclists in pelotons

Superfluids as Active Fluids ?

- 1. more than one vortex needed for dissipation reduction
- 2. dissipation reduction more efficient when vortices are closer

↓

superfluid ⁴He is an active fluid hydrodynamic cooperation between superfluid vortices reduce dissipation

- bacterial suspensions
- fungal spores in air
- cyclists in pelotons

Superfluids as Active Fluids ?

- 1. more than one vortex needed for dissipation reduction
- 2. dissipation reduction more efficient when vortices are closer

↓

superfluid ⁴He is an active fluid hydrodynamic cooperation between superfluid vortices reduce dissipation

- bacterial suspensions
- fungal spores in air
- cyclists in pelotons

Mutual Friction Force **F**_{ns}

Preliminary Results with FOUCAULT

[Martin & Tough, *Phys Rev B* **27**, 2788 (1983

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへで

Results

Preliminary Results with FOUCAULT

[Martin & Tough, *Phys Rev B* 27, 2788 (1983)]

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ● ●

• $\gamma_1 = 77 \text{ cm/s}^2$

Mutual Friction Force F_{ns} 00000000 Classical modeling of **F***ns*

Results

Preliminary Results with FOUCAULT

[Gao et al., Phys Rev B 96, 094511 (2017)]

・ロト・一部・・ヨト・ヨト ヨー うらつ

Mutual Friction Force F_{ns}

Preliminary Results with FOUCAULT

990

Introduction	

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

Summary

• novel fully coupled algorithm FOUCAULT

[LG, Baggaley, Barenghi, Krstulovic, EPJP 135, 547 (2020)]

• reproduce experimental results

[LG, Krstulovic, Barenghi, Phys Rev Fluids 8, 014702 (2023)]

• Superfluids can be described as active fluids

Introduction	

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Perspective

- N-body GPU algorithm for vortex dynamics
 - intermittency
 - well resolved statistics
- inertial particle dynamics
 - QT vs CT
- wall-bounded flows
 - boundary layers