Mathematical studies on the finite temperature BEC model

Reika Fukuizumi ¹ joint work with A. de Bouard ², and A. Debussche ^{3,4}

¹Department of Mathematics, School of Fundamental Science and Engineering,
Waseda University, Japan

²CMAP, Ecole Polytechnique, France

³Univ Rennes, IRMAR, Rennes, France

⁴Institut Universitaire de France

Bridging Classical and Quantum Turbulence @ Cargèse, France

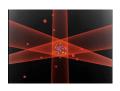
- Introduction
- 2 Known results in 1D case
- 3 2D case
 - Local/Global existence of solution
 - Construction of Gibbs measure

- Introduction
- Mown results in 1D case
- 3 2D case
 - Local/Global existence of solution
 - Construction of Gibbs measure

- Introduction
- Mown results in 1D case
- 2D case
 - Local/Global existence of solution
 - Construction of Gibbs measure

Bose-Einstein Condensation

A state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero; a large amount of bosons occupy the lowest quantum state, where macroscopic quantum phenomena can be observed. Predicted in 1924-25, Realization in 1995.



⁸⁷Rb, ²³Na, ⁷Li, ¹H, ⁸⁵Rb, ⁴¹K, ⁴He, ¹³³Cs, ¹⁷⁴Yb, ⁵²Cr, ⁴⁰Ca, ⁸⁴Sr

: Example of the dilute gases of bosons

Modeling

• $x_1, ..., x_N$ particles in a trapping potential V, two-body interactions

$$\hat{H} = \sum_{j=1}^{N} \left(-\frac{\hbar^2}{2m} \Delta_{x_j} + V(x_j) \right) + \sum_{1 \leq j,k \leq N} U(x_j - x_k)$$

- Ground state: minimum of energy corresponding to \hat{H} for the wave function $\tilde{\psi}(x_1,...,x_N)$
- For very small temperature T, thermal wavelength of particles

$$\lambda_T = \frac{\hbar}{(2\pi m k_B T)^{1/2}}$$

is larger than the particle distance

ullet Replace interaction potential U by

$$U_{eff}(x) = \frac{4\pi\hbar^2 a}{m} \delta_0(x)$$

a: atomic diffusion length (positive or negative)

Modeling

• Bose gaz: Hatree approximation

$$\tilde{\psi}(x_1, x_2, ..., x_N) = \prod_{j=1}^N \psi(t, x_j)$$

- large number of particles rescaling
- Gross-Pitaevskii (1961, superfluids)

$$i\hbar\partial_t\psi(t,x)=\left(-rac{\hbar^2}{2m}\Delta+V(x)+rac{4\pi\hbar^2a}{m}|\psi|^2
ight)\psi:=L_{GP}\psi$$

V: confinement potential

Non zero temperature

- ullet Aim: modeling of condensate close to critical temperature $T_{cr}>0$
- need modeling of interactions with non condensated atoms, here assumed "thermalized"
- \bullet ψ : wave function for the condensated atoms

$$L_{GP} = -\frac{\hbar^2}{2m}\Delta + V(x) + \frac{4\pi\hbar^2 a}{m}|\psi|^2$$

where m is the mass, a is the positive s-wave scattering length.

• Stochastic projected GPE: Duine, Stoof 2001 Gardiner-Davis, 2003

$$d\psi = \mathcal{P}_c \Big\{ - \frac{i}{\hbar} L_{GP} \psi dt + \frac{\gamma}{k_B T} (\nu - L_{GP}) \psi dt + dW(x, t) \Big\}$$

where \mathcal{P}_c : projection to the lowest energy modes, ν : chemical potential

$$\langle dW(s,y), dW(t,x) \rangle = 2\gamma \delta_{t-s} \delta_{x-y}$$

Additional terms: interaction thermal cloud-condensate

Equilibrium state

Energy: ψ_c projected wave function (d_c -dimensional)

$$H(\psi_c) = \frac{\hbar^2}{2m} |\nabla \psi_c|_{L^2}^2 + \frac{1}{2} |\sqrt{V(x)}\psi_c|_{L^2}^2 - \frac{\nu}{2} |\psi_c|_{L^2}^2 + \frac{1}{4} |\psi_c|_{L^4}^4,$$

with

$$V(x) = \frac{m}{2}\omega^2|x|^2$$

- ullet Ground state (T=0) : (when u large) global minimum, thus stable
- Gibbs mesure (T > 0):

$$\rho_{T}(d\psi_{c}) = \alpha_{c} \exp\left(-\frac{H(\psi_{c})}{k_{B}T}\right) d\psi_{c}$$

- Spontaneous nucleation of vortices in BEC (Weiler et al. Nature 2008).
 Rigorously in mathematics,
 - Treat the infinite dimension model
 - Make sense the Gibbs measure and the convergence of the system

Infinite dimensional model

- $(\Omega, \mathcal{F}, \mathbb{P})$: probability space endowed with filtration $(\mathcal{F}_t)_{t\geq 0}$
- Write the equation in dimensionless form :

$$d\Psi = (i + \gamma)(\Delta\Psi - V(x)\Psi + \nu\Psi - \lambda|\Psi|^2\Psi)dt + \sqrt{2\gamma}dW$$

where $\gamma > 0$. Assume $V(x) = |x|^2$, $\nu \ge 0$ and $\lambda = 1$ (defocusing).

- $Ah_k = (-\Delta + |x|^2)h_k = \lambda_k^2 h_k$ with $\lambda_k^2 = 2|k| + d$, $k \in \mathbb{N}^d$ $h_k(x)$: Hermite functions.
- W(t): cylindrical Wiener pocess on $L^2(\mathbb{R}^d,\mathbb{C})$, i.e.

$$W(t,x) = \sum_{k \in \mathbb{N}^d} \beta_k(t) h_k(x), \quad t > 0, \ x \in \mathbb{R}^d$$

where $\{\beta_k(t)\}_{k\in\mathbb{N}^d}$: a seq. of \mathbb{C} -valued independent BM.

$$\mathbb{E}(W(t,x)W(s,y)) = (s \wedge t) \sum_{k} h_k(x)h_k(y),$$

$$\int_{\mathbb{R}^d} \sum_k h_k(x) h_k(y) \phi(y) dy = \sum_k h_k(x) (h_k, \phi)_{L^2} = \phi(x) = \int_{\mathbb{R}^d} \delta(x - y) \phi(y) dy.$$

Gibbs measure

- Constructive quantum field theory;
 Simon, Lieb... 60's
- Lebowitz-Rose-Speer 1988, Bourgain 1994: Gibbs measures and global existence for dispersive equations (Hamiltonian systems); lots of results since then Burq, Gerard, Thomann, Tzvetkov, Colliander, Oh, Bourgain, Bulut,...
- Stochastic case (BEC model): Carlen-Fröhlich-Lebowitz 2017 (regular noise), De Bouard-Debussche-F. 2018, (Hoshino 2018)
- Stochastic case (Φ⁴ model): Da Prato-Debussche 2003, Tsatsoulis-Weber 2018, Albeverio-Kusuoka 2020, Gubinelli-Hofmanova 2021, Oh-Okamoto-Tolomeo...

The case d = 1.

Hamiltonian

$$H(\psi) = rac{1}{2}\langle\psi,A\psi
angle + rac{1}{4}\int_{\mathbb{R}}|\psi|^4dx$$

where $A = -\partial_x^2 + x^2$ with eigenvalues $\lambda_k^2 = 2k + 1$, $k \in \mathbb{N}$.

• We may formally write

$$\rho(d\psi) = \Gamma^{-1}e^{-H(\psi)}d\psi
= \Gamma^{-1}e^{-\frac{1}{4}\int_{\mathbb{R}}|\psi|^{4}dx}e^{-\frac{1}{2}\langle A\psi,\psi\rangle}d\psi.$$

• The last term may be written using the decomposition $\psi = \sum_k (a_k + ib_k)h_k$ with $(a_k, b_k) \in \mathbb{R}^2$,

$$\prod_{k} \frac{\lambda_k^2}{2\pi} e^{-\frac{\lambda_k^2}{2}(a_k^2 + b_k^2)} da_k db_k, \text{ and this is a Gaussian measure}.$$

We call the limit ρ as $N \to \infty$ the Gibbs measure if exists:

$$\rho := \lim_{N \to \infty} \Gamma_N^{-1} e^{-\frac{1}{4} \int_{\mathbb{R}} |\psi_N|^4 dx} e^{-\frac{1}{2} \langle A \psi_N, \psi_N \rangle} d\psi_N$$

 ψ_N is a finite dimensional cut of ψ .

ullet The Gaussian measure $(:=\mu)$ is equivalent to the law of

$$Z_{\gamma}(t) = \sqrt{2\gamma} \int_{-\infty}^{t} e^{-(t-s)(i+\gamma)(-\partial_{x}^{2}+x^{2})} dW(s),$$

the stationary solution of

$$dZ = (i + \gamma)(\partial_x^2 - x^2)Zdt + \sqrt{2\gamma}dW$$

• Write $Z_{\gamma}(t)$ using the basis $\{h_k\}_k$,

$$Z_{\gamma}(t) = \sum_{k \in \mathbb{N}} \left(\sqrt{2\gamma} \int_{-\infty}^{t} e^{-(t-s)(i+\gamma)\lambda_{k}^{2}} d\beta_{k}(s) \right) h_{k}$$

- (in 1d) It is known the decay of h_k in L^p (Koch-Tataru, Duke Math.J. 2005): for $p \geq 4$, $|h_k|_{L^p(\mathbb{R})} \leq C_p \lambda_k^{-1/6}$, and by interpolation, if $2 \leq p \leq 4$, $|h_k|_{L^p(\mathbb{R})} \leq C_p \lambda_k^{-\frac{1}{3}(1-\frac{2}{p})}$.
- Recall that $\lambda_k^2 = 2k + 1$ and thus the series converges for p > 2, i.e.,

$$Z_{\gamma} \in L^{2m}(\Omega; L^p)$$
 for any $m \ge p/2 > 1$

i.e. $Z_{\gamma} \in L^p$ a.s. i.e. $\mu(L^p) = 1$ for p > 2, thus $\rho(L^p) = 1$.

Let $p \ge 3$, $\Psi(0) \in L^p(\mathbb{R})$, $\gamma > 0$ and $\nu = 0$ (Theorems hold also for $\nu > 0$).

Theorem (de Bouard, Debussche, F.(2018))

There exists a set $\mathcal{O} \subset L^p(\mathbb{R})$ such that $\rho(\mathcal{O}) = 1$, and such that for $\Psi(0) \in \mathcal{O}$ there exists a unique solution $\Psi(\cdot) \in C([0,\infty), L^p(\mathbb{R}))$ a.s.

$$P_t\phi(y) := \mathbb{E}(\phi(\Psi(t,y))), y \in \mathcal{O}, t \geq 0.$$

Theorem (de Bouard, Debussche, F.(2018))

Let $\phi \in L^2((L^p, d\rho), \mathbb{R})$, and $\bar{\phi} = \int_{L^p} \phi(y) d\rho(y)$. Then $P_t \phi(\cdot)$ converges exponentially to $\bar{\phi}$ in $L^2((L^p, d\rho), \mathbb{R})$, as $t \to \infty$; more precisely,

$$\int_{L^p} |P_t \phi(y) - \bar{\phi}|^2 d\rho(y) \leq e^{-\gamma t} \int_{L^p} |\phi(y) - \bar{\phi}|^2 d\rho(y).$$

Using Strong Feller property + Irreducibility of P_t on L^p ,

Theorem (de Bouard, Debussche, F.(2018))

For any $\Psi(0) \in L^p(\mathbb{R})$, there exists a unique solution $\Psi(\cdot) \in C([0,\infty),L^p(\mathbb{R}))$ a.s.

The case d = 2.

$$d\Psi = (i + \gamma)(\Delta\Psi - |x|^2\Psi + \nu\Psi - |\Psi|^2\Psi)dt + \sqrt{2\gamma}dW, \quad \gamma > 0.$$

• In 2d, the linear stationary sol. $Z_{\gamma} \in \mathcal{W}^{-s,q}(\mathbb{R}^2)$ if s > 0, $q \ge 2$, sq > 2 (thus, supp μ also).

$$\mathcal{W}^{\sigma,p}(\mathbb{R}^2) := \{ f \in \mathcal{S}' : (-\Delta + |x|^2)^{\frac{\sigma}{2}} f \in L^p(\mathbb{R}^2) \}, \ \sigma \in \mathbb{R}, \ p > 1.$$

• (Da Prato-Debussche trick) decompose $\Psi = U + Z_{\gamma} = (\text{good regularity}) + (\text{bad regularity})$, U satisfies a random PDE:

$$\partial_t U = (i + \gamma)(\Delta U - |x|^2 U - |U + Z_{\gamma}|^2 (U + Z_{\gamma})) = (i + \gamma)(\Delta U - |x|^2 U - |Z_{\gamma}|^2 Z_{\gamma} - 2U|Z_{\gamma}|^2 - U^2 \bar{Z}_{\gamma} \cdots)$$

Wick products

• We define, for any $k, l \in \mathbb{N}$,

$$:Z_{\gamma}^{k}ar{Z}_{\gamma}^{l}::=\lim_{N o\infty}H_{k,l}(S_{N}Z_{\gamma};C_{V,N}^{2})$$

where $S_N Z_\gamma = \sum_{k \in \mathbb{N}^2} \chi\left(rac{\lambda_k^2}{\lambda_N^2}
ight) (Z_\gamma, h_k)_{L^2} h_k$, χ :smooth cut-off

• $H_{k,l}(z;\sigma)$: complex Hermite polynomials: $H_{0,0}(z;\sigma) = 1$, $H_{1,0}(z;\sigma) = z$, $H_{2,0}(z;\sigma) = z^2$, $H_{1,1}(z;\sigma) = z\bar{z} - \sigma$, $H_{3,0}(z;\sigma) = z^3$, $H_{2,1}(z;\sigma) = z^2\bar{z} - 2\sigma z$

$$C_{V,N}^2(\mathbf{x}) = \mathbb{E}(|S_N Z_{\gamma}|^2) = \sum_{k \in \mathbb{N}^2} \chi\left(\frac{\lambda_k^2}{\lambda_N^2}\right) \frac{h_k^2(\mathbf{x})}{\lambda_k^2} = \sum_{k \in \mathbb{N}^2} \chi\left(\frac{\lambda_k^2}{\lambda_N^2}\right) \frac{h_k^2(\mathbf{x})}{2|k| + 2}.$$

- The decay property in k of $h_k(x)$ is worse, compared to the previous torus cases. In particular the diverging 'constant' $C_{V,N}^2(x)$ is no more constant, and not $O(\log N)$.
- For any $\{H_{k,l}(S_NZ_\gamma; C_{V,N}^2)\}_{N\in\mathbb{N}}$ is Cauchy in $L^q(\Omega, \mathcal{W}^{-s,q}(\mathbb{R}^2))$ with s>0, sq>2, q>2.

- Introduction
- 2 Known results in 1D case
- 2D case
 - Local/Global existence of solution
 - Construction of Gibbs measure

Theorem (local existence, de Bouard-Debussche-F. (2022))

Fix any T>0. Let $\gamma>0$, q>18, $0< s<\frac{1}{9}$ with qs>2. Let $U(0)\in \mathcal{W}^{-s,q}$. Then there exist $T_0^*=T_0^*(|U(0)|_{\mathcal{W}^{-s,q}},\|:Z_\gamma^3:\|_{\mathcal{W}^{-s,q}}(T))>0$ and a unique solution U such that

$$U \in C([0, T_0^*) : \mathcal{W}^{-s,q}) \cap L^r(0, T_0^* : \mathcal{W}^{\beta,p})$$
 a.s.,

for any β , p and r satisfying q>p>3r, r>6, $s<\beta<\frac{2}{p}$, $\beta-s>\frac{2}{p}-\beta$, and $s+2\left(\frac{2}{p}-\beta\right)<2\left(1-\frac{1}{q}\right)$, where

$$\|:Z_{\gamma}^n:\|_{\mathcal{W}^{-s,q}}(T)=\max_{0\leq k,l\leq n,k+l=n}\sup_{0\leq t\leq T}|:Z_{\gamma}^k\overline{Z_{\gamma}^l}:|_{\mathcal{W}^{-s,q}}.$$

We have moreover almost surely $T_0^* = T$ or $\lim_{t \uparrow T_0^*} |U(t)|_{\mathcal{W}^{-s,q}} = +\infty$.

Estimates on the semi-group $e^{-t(i+\gamma)A}$: thanks to Mehler transform and estimates on the real GL semi-group: Let $\gamma > 0$. For small t > 0,

 $|e^{-t(i+\gamma)A}f|_{L^{r}} < C_0 t^{-\frac{1}{l}}|f|_{L^{s}}, \quad f \in L^{s}(\mathbb{R}^2)$

with

$$0 \le \frac{1}{r} \le \frac{1}{r} + \frac{1}{l} = \frac{1}{s} \le 1.$$

 $|e^{-t(i+\gamma)A}f|_{W^{s,p}} < C_1 t^{-\frac{s}{2}}|f|_{L^p}, \quad f \in L^p(\mathbb{R}^2)$

• Let q > p > 1 and $\sigma > \frac{1}{p} - \frac{1}{q}$.

$$|e^{-t(i+\gamma)A}f|_{L^p} \le C_2 t^{-\sigma}|f|_{L^q}, \quad f \in L^q(\mathbb{R}^2)$$

• (for the nonlinear terms) Let $1 < p, q < +\infty$, $0 < s < \beta < 2/p$, and $m \in \mathbb{N} \setminus \{0\}$. Suppose $\beta - s - (m-1)(\frac{2}{n} - \beta) > 0$, and $s + m(\frac{2}{n} - \beta) < 2(1 - \frac{1}{n}).$

$$|hf^m|_{\mathcal{W}^{-(s+m(\frac{2}{p}-\beta)),q}} \leq C|h|_{\mathcal{W}^{-s,q}}|f|_{\mathcal{W}^{\beta,p}}^m.$$

• Let $2 < \tilde{q} < 2 + 2(\gamma^2 + \gamma\sqrt{1 + \gamma^2})$. If $U \in C([0, T_0^*), L^{\tilde{q}})$ we have the a priori bound in $L^{\tilde{q}}$: for any T>0 there exists a constant C such that

$$\sup_{0\leq t\leq T_0^*\wedge T}|U(t)|_{L^{\tilde{q}}}^{\tilde{q}}\leq e^{-\frac{\gamma\tilde{q}t}{8}}|U(0)|_{L^{\tilde{q}}}^{\tilde{q}}+C,$$

where T_0^* : the maximal existence time in the above local theory, and C depends on $\gamma, \tilde{q}, \| : Z_{\gamma}^3 : \|_{\mathcal{W}^{-s,q}}(T)$.

- Choice $\tilde{q} = q \rightsquigarrow$ the restriction on γ (γ should be large)
- Bootstrap argument (Matsuda 2019): Using heat smoothing, we can upgrade the integrability and regularity of solution to have the enegy estimate for all $\gamma > 0$.

Theorem (global existence, de Bouard-Debussche-F. (2022))

Let $\gamma > 0$, q > 18, $0 < s < \frac{1}{9}$ with qs > 2. Let $U(0) \in \mathcal{W}^{-s,q}(\mathbb{R}^2)$. Then there exists a unique global solution U in $C([0,T],\mathcal{W}^{-s,q})$ a.s. for any T > 0.

Global existence for any $\gamma > 0$

Strategy (i)-(iv):

(i) Starting from $U(0) \in \mathcal{W}^{-s,q}$, with q>18, $0 < s < \frac{1}{9}$ with qs>2, we first prove that for any $q_0>2$, and for any small $t_0>0$, we have $U(t_0) \in L^{q_0}$. The application of above $L^{\tilde{q}}$ bound with $\tilde{q}=q_0$ then show that U is uniformly bounded in L^{q_0} .

Use of heat smoothing + bilinear estimates

Lem. Let q_0 be such that $2 < q_0 < 2 + 2(\gamma^2 + \gamma\sqrt{1 + \gamma^2})$. Then for any $0 < t_0 < t_1 < T_0^*$, $U \in C([t_0, t_1]; L^{q_0}(\mathbb{R}^2))$ and there is a constant a > 0 such that

$$\sup_{t\in[t_0,t_1]}|U(t)|_{L^{q_0}}\leq C(t_0^{-a},|U(0)|_{\mathcal{W}^{-s,q}},\|:Z_{\gamma}^3:\|_{\mathcal{W}^{-s,q}}(T)).$$

- (ii) We then show an estimate on $|U(t)|_{\mathcal{W}^{\gamma,p}}$ with $\gamma>0$ small, and p>2, close to 2.
- Heat smoothing + bilinear estimates + uniform L^{q_0} bound

Lem. There exists p > 2, $\gamma \in (0,1)$ such that for any $0 < t_0 < t_1 \le T_0^* \wedge T$

$$\int_{t_0}^{t_1} |U(t)|_{\mathcal{W}^{\gamma,3\rho}}^3 dt \leq C(T, t_0^{-a}, |U(0)|_{\mathcal{W}^{-s,q}}, \|: Z_{\gamma}^3: \|_{\mathcal{W}^{-s,q}}(T)),$$

$$\sup_{t_0 \le t \le t_1} |U(t)|_{\mathcal{W}^{\gamma,p}} \le C(T, t_0^{-a}, |U(0)|_{\mathcal{W}^{-s,q}}, \|: Z_{\gamma}^3: \|_{\mathcal{W}^{-s,q}}(T)).$$

for some a > 0.

- (iii) (bootstrap argument) Once we have such an estimate, by bootstrap arguments, we can upgrade the regularity from $\gamma > 0$ close to 0 to γ < 1 close to 1.
- Lem. Assume that there exist p > 2, $\gamma \in (0, \frac{2}{p})$ such that for any $0 < t_0 < t_1 \le T \wedge T_0^*$

$$\int_{\frac{t_0}{2}}^{t_1} |U(t)|_{\mathcal{W}^{\gamma,3p}}^3 dt + \sup_{\frac{t_0}{2} \leq t \leq t_1} |U(t)|_{\mathcal{W}^{\gamma,p}} \leq C.$$

Assume that $\varepsilon \in (0, \frac{5}{3} - \frac{10}{3n})$ satisfies $\frac{\gamma + \varepsilon}{2} < \frac{5}{6} - \frac{2}{3n}$. Then,

$$\int_{t_0}^{t_1} |U(t)|^3_{\mathcal{W}^{\gamma+\varepsilon,3\rho}} dt + \sup_{t_0 \leq t \leq t_1} |U(t)|_{\mathcal{W}^{\gamma+\varepsilon,\rho}} \leq C'.$$

- (iv) Then by the Sobolev embedding, we will obtain a bound on $|U(t)|_{\mathcal{W}^{-s,q}}$.
- Lem. Now, repeating several times the bootstrap argument, one may thus show a uniform bound for U in $\mathcal{W}^{\gamma,p}$ for some p with 2 andany $\gamma < \frac{2}{p}$. Choosing then $\gamma = -s + 2\left(\frac{1}{p} - \frac{1}{q}\right)$, so that $\mathcal{W}^{\gamma,p} \subset \mathcal{W}^{-s,q}$, we obtain

$$\sup_{t_1 \le T \wedge T_0^*} \sup_{t \in [t_0,t_1]} |U(t)|_{\mathcal{W}^{-s,q}} \le C(T,t_0^{-s},|U(0)|_{\mathcal{W}^{-s,q}},\|:Z_\gamma^3:\|_{\mathcal{W}^{-s,q}}(T)),$$

and global existence in $\mathcal{W}^{-s,q}$ follows.

- Introduction
- 2 Known results in 1D case
- 2D case
 - Local/Global existence of solution
 - Construction of Gibbs measure

Existence of Gibbs measure

$$d\rho = \Gamma^{-1} e^{-\int_{\mathbb{R}^2} \frac{1}{4} |\psi|^4 dx} e^{-\frac{1}{2} \langle A\psi, \psi \rangle} d\psi$$

• We cannot make sense of $e^{-\int_{\mathbb{R}^2} \frac{1}{4} |\psi|^4 dx}$ since $L^4(\mathbb{R}^2)$ is not in $\operatorname{supp} \mu$. Need a renormalization both in the equation and in the Gibbs measure.

$$d\rho = \Gamma^{-1} e^{-\int_{\mathbb{R}^2} \frac{1}{4} : |\psi|^4 : dx} e^{-\frac{1}{2} \langle A\psi, \psi \rangle} d\psi$$

• (D.Robert) We cannot define directly the limit $N \to \infty$ of $\exp\left\{-\frac{1}{4}\int_{\mathbb{R}^2}:|S_N\psi|^4:(x)dx\right\}d\mu_N(\psi)$, this problem is related to the property of the kernel of $(-\Delta+|x|^2)^{-1}$:

$$K(x,y):=\sum_{k\in\mathbb{N}^2}rac{h_k(x)h_k(y)}{\lambda_k^2}, ext{ and } K
otin L_{x,y}^4.$$

• \rightsquigarrow define the Gibbs measure as a limit of

$$\tilde{\rho}_{N}(d\psi) = \Gamma_{N} \exp\left\{-\int_{\mathbb{R}^{2}} \left(\frac{1}{4}|S_{N}\psi(x)|^{4} - 2C_{V,N}^{2}(x)|S_{N}\psi(x)|^{2} + 2C_{V,N}^{4}(x)\right) dx\right\} \mu_{N}(d\psi)$$

$$\psi \in E_{N}^{\mathbb{C}} = \operatorname{span}\{h_{0}, h_{1}, ..., h_{N}\}$$

• Let $\gamma > 0$. Considering a stationary solution $(U_N, Z_N) \in C(\mathbb{R}_+; E_N^{\mathbb{C}} \times E_N^{\mathbb{C}})$ of the coupled evolution on $E_N^{\mathbb{C}}$ given by

$$\begin{cases} \partial_t U = \gamma \left[HU - S_N (:|S_N(U+Z)|^2 S_N(U+Z):) \right] \\ dZ = \gamma HZ dt + \sqrt{2\gamma} \Pi_N dW, \end{cases}$$

If 0 < s < 1, $q \ge 2$ and qs > 2, we see that there is a constant C > 0 independent of t and N, such that

$$\mathbb{E}(|(-H)^{\frac{1}{2}}U_N|_{L^2}^2) \leq C.$$

• The embedding $\mathcal{W}^{1,2} \subset L^q$, for any $q < +\infty$ and the fact $\mathcal{W}^{-s,q} \subset \mathcal{W}^{-s',q}$ compact if s' > s deduce:

Theorem (de Bouard-Debussche-F. (2022))

The family of finite dimensional Gibbs measures $(\tilde{\rho_N})_N$ is tight in $\mathcal{W}^{-s,q}$ for any 0 < s < 1, $q \ge 2$ s.t. qs > 2. The weak limit ρ is an invariant measure.