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Introduction

Bose-Einstein Condensation

A state of matter of a dilute gas of bosons cooled to temperatures very
close to absolute zero; a large amount of bosons occupy the lowest

quantum state, where macroscopic quantum phenomena can be observed.
Predicted in 1924-25, Realization in 1995.

87Rb, 23Na, "Li, 'H, 85Rb,
41K 4He, 133Cs, 174YD,
52Cr, 40Ca, #4Sr

: Example of the dilute gases of bosons
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Modeling

@ x1,...,xy particles in a trapping potential V/, two-body interactions

. 2
H:Z( ij+vxj> Z U(xj — xx)

j=1 <j,k<N

o Ground state: minimum of energy corresponding to H for the wave

function ¢(x1, .., xy)
@ For very small temperature T, thermal wavelength of particles

h

(27‘(‘ka T)1/2

is larger than the particle distance
@ Replace interaction potential U by

Arh?a

AT =

Uerr(x) = 0o (x)

a: atomic diffusion length (positive or negative)
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Modeling

@ Bose gaz: Hatree approximation
P(x1, X2, o0y XN) = HTZJ(EXJ‘)

@ large number of particles - rescaling
o Gross-Pitaevskii (1961, superfluids)

h? 4rh?
ihde(t, x) = (—2mA+ V(x) + 122

|?/)|2> Y= Lepy

m

V: confinement potential
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Introduction

Non zero temperature

e Aim: modeling of condensate close to critical temperature T, > 0

@ need modeling of interactions with non condensated atoms, here
assumed “thermalized”

@ . wave function for the condensated atoms

2 4 h2
Lep = — T2 A4 v(x) 4 AT
2m

[l

where m is the mass, a is the positive s-wave scattering length.
@ Stochastic projected GPE: Duine, Stoof 2001 Gardiner-Davis, 2003

m

_pJ_ 1 T (o
i = PC{ Laptdt + (v — Lop)idt + dW(x, t)}
where P.: projection to the lowest energy modes, v: chemical
potential

<dW(57 }/)7 dW(t7 X)> = 275t—55x—y

Additional terms: interaction thermal cloud-condensate
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Introduction

Equilibrium state

Energy: 1. projected wave function (d.-dimensional)

h? 1 v 1
H(%) = EIVW@ + §| V V(X)wc|i2 - §|wc‘%2 + Z|wc [th

with m
V(x) = §w2|X]2

e Ground state (T = 0) : (when v large) global minimum, thus stable
o Gibbs mesure (T > 0):

priave) = acenp (-5 ) au

e Spontaneous nucleation of vortices in BEC (Weiler et al. Nature 2008).
Rigorously in mathematics,
@ Treat the infinite dimension model
@ Make sense the Gibbs measure and the convergence of the system
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Infinite dimensional model

o (Q,F,P) : probability space endowed with filtration (F;)¢>0

@ Write the equation in dimensionless form :

dV = (i +7)(AV — V(x)¥ + v¥ — \|W|2W)dt + /2ydW
where v > 0. Assume V/(x) = [x|?, v > 0 and A = 1 (defocusing).
o Ahk = (—A + |x|?)hk = A2h with A2 = 2|k| + d, k € N9
hi(x): Hermite functions.
e W(t): cylindrical Wiener pocess on Lz(Rd,(C), ie.

tX) Z’Bk hk t>O,X€Rd
keNd

where {3k (t)}iene : a seq. of C-valued independent BM.
E(W(t,x)W(s,y)) = (s A t) Z hie(x)hi(y)

/Rd Z hi(x)he(y Z he(x)(hi; 9)i2 = d(x) = [ (x — y)o(y)dy.

Rd
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Introduction

Gibbs measure

e Constructive quantum field theory;
Simon, Lieb... 60's

o Lebowitz-Rose-Speer 1988, Bourgain 1994: Gibbs measures and global
existence for dispersive equations (Hamiltonian systems) ; lots of
results since then Burq, Gerard, Thomann, Tzvetkov, Colliander, Oh,
Bourgain, Bulut,...

@ Stochastic case (BEC model): Carlen-Frohlich-Lebowitz 2017 (regular
noise), De Bouard-Debussche-F. 2018, (Hoshino 2018)

@ Stochastic case (¢* model): Da Prato-Debussche 2003,
Tsatsoulis-Weber 2018, Albeverio-Kusuoka 2020, Gubinelli-Hofmanova
2021, Oh-Okamoto-Tolomeo...
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The case d = 1.
@ Hamiltonian

1 1
HEY) = 3t Av) + 7 [ loltox
R
where A = —02 + x? with eigenvalues \2 =2k + 1, k € N.
o We may formally write
p(dy) = Tre MWy

[le—4 Jalvl*dx o= 5 (AYy d?/)

@ The last term may be written using the decomposition

Y =", (ak + ibk)he with (ax, by) € R?,

)\2
)‘k e~ 2 (aF+b7)

5 daidby, and this is a Gaussian measure.
T

We caII the limit p as N — oo the Gibbs measure if exists:

1 1 Iy
p = lim rxllefifR|wN‘4dXe7§<AWN7Q‘IJN>dd)N
N—oo

1p is a finite dimensional cut of .
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Introduction

@ The Gaussian measure (:= p) is equivalent to the law of

t
Z.(t) = /2y / e~ (=) (=02 guay(s),
the stationary solution of
dZ = (i +7)(0? — x?) Zdt + \/2ydW
o Write Z,(t) using the basis {hy},

Z,(t) = f / ~{e=s)( '”)Akdﬁk(s))hk
kEN

@ (in 1d) It is known the decay of hy in LP (Koch-Tataru, Duke Math.J.
2005): for p > 4, |hy|ip(r) < C A_1/6, and by interpolation, if

s
2< p < hlm < G
o Recall that A7 = 2k +1 and thus the series converges for p > 2, i.e.,
Z, € P™(Q;LP) forany m>p/2>1
i.e. Z, € LP as. i.e. pu(LP) =1 for p > 2, thus p(LP) = 1.
Stochastic GPE July 6, 2023 11/25



Known results in 1D case

Let p > 3, ¥(0) € LP(R), v > 0 and v = 0 (Theorems hold also for v > 0).

Theorem (de Bouard, Debussche, F.(2018))

There exists a set O C LP(R) such that p(O) = 1, and such that for V(0) € O
there exists a unique solution V(-) € C([0, c0), LP(R)) a.s.

Pep(y) == E(6(V(t,y)), y € O, t = 0.
Theorem (de Bouard, Debussche, F.(2018))

Let ¢ € L?((LP,dp),R), and ¢ = Ji» ¢(v)dp(y). Then P¢(-) converges
exponentially to ¢ in L>((LP,dp),R), as t — oo ; more precisely,

IPe(y) — B2dp(y) < et / 16(y) — B2dp(y).
LP Lp

Using Strong Feller property + Irreducibility of P; on LP,

Theorem (de Bouard, Debussche, F.(2018))
For any W(0) € LP(R), there exists a unique solution W(-) € C([0, c0), LP(R)) a.s.
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The case d = 2.

dV = (i +7)(AV — |xPV + 0¥ — |V]2W)dt + \/27dW, ~ > 0.

o In 2d, the linear stationary sol. Z, € W™s9(R?) if s >0, g > 2,
sq > 2 (thus, supp p also).

WIP(R?) :={f eS8 : (—A+|x]*)2f e [P(R?)}, 0 €R, p> 1.

@ (Da Prato-Debussche trick) decompose W = U + Z, =(good
regularity)+(bad regularity), U satisfies a random PDE:

U = (i+)(AU—|x]PU - |U+Z,A(U+ Z))
= (i+)(AU~x?U~|2,?Z, - 2U|Z,|* - U*Z,---)
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Wick products

@ We define, for any k,/ € N,
:ZfY‘Z'{: = lim Hk7,(5NZW;C\2/7N)

N—oo

where SyZ, =3 o2 X (i—z) (Zy, hic) 12 hie, x:smooth cut-off
N
@ Hy (z;0): complex Hermite polynomials: Hyo(z;0) =1, Hio(z;0) = z,
Hao(z;0) = 72, Hi1(z;0) =zZ — 0, H39(z;0) = z3,
Hy1(z;0) = 2?2 — 20z....

2 2(x 2 2(x
Gt =Bsvz ) = v (55) 52 = 0 (3F) gty

keN2 keN2

@ The decay property in k of hi(x) is worse, compared to the previous torus
cases. In particular the diverging ‘constant’ CZ ,(x) is no more constant,
and not O(logh).

© For any {Hxi(SnZy; CY y)}nen is Cauchy in L9(Q, W~*9(R?)) with s > 0,
sq>2,q>2.
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Local/Global existence of solution
Outline

© 2D case
@ Local/Global existence of solution
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Theorem (local existence, de Bouard-Debussche-F. (2022))

Fixany T > 0. Lety >0, ¢ > 18,0 <s < & with gs > 2. Let
U(0) € W59, Then there exist

T = T5(JU(0)|yy—s.a, || Zf;‘ : |lw-s4(T)) > 0 and a unique solution U
such that
Ue C([0,Tg) - W==9)n L0, Tg : WPP)  as.,

for any (3, p and r satisfying q > p > 3r, r>6,5<ﬁ<%,5—5>%—5,
and5+2(%—ﬁ) <2(1—%), where

o 70« —sq(T c ZKZ1 eq.
H ¥ HW 5*‘7( ) 0<kl<nk+l ”OEI:ET‘ v <y |W ©q

We have moreover almost surely T§ = T or limy1s [U(t)|yy-s.0 = +o00.
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Local/Global existence of solution
Estimates on the semi-group e~ t(t7)A . thanks to Mehler transform and
estimates on the real GL semi-group: Let v > 0. For small ¢ > 0,
°
. 1
e DAL < GotTT|f|s, € L°(R?)
with

0<

N | =

<

N -
~| =
0|

+ <L

e tHEVAf|yso < Cit73|f| e, € LP(R?)
° Letq>p>1anda>%—%.
le DA o < Gt ™O|f|e, € LI(R?)

o (for the nonlinear terms) Let 1 < p,q < +00, 0 <s < 3 < 2/p, and
m € N\ {0}. Suppose 8 —s — (m— 1)(% — ) >0, and
s+m(%—ﬁ) <2(1—%).

|hfm|W7(s+m(%76)),q S C|h|W75’q | f|%/8’l"
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o Let2 < §<2+2(v2+vv1+~2). If Ue C([0, T§), L) we have
the a priori bound in L9: for any T > 0 there exists a constant C such
that ) ) )

sup _|U(e)[T; < e S|V, + C,
0<t<TEAT
where T the maximal existence time in the above local theory, and
C depends on 7,4, || : Z3 : [[yy—=a(T).

@ Choice § = g ~~ the restriction on 7 (v should be large)

e Bootstrap argument (Matsuda 2019): Using heat smoothing, we
can upgrade the integrability and regularity of solution to have the
enegy estimate for all v > 0.

Theorem (global existence, de Bouard-Debussche-F. (2022))

Lety >0, q>18,0<s < § withqs > 2. Let U(0) € W~S9(R2). Then
there exists a unique global solution U in C([0, T],W~*=49) a.s. for any
T >0.
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Local/Global existence of solution
Global existence for any v > 0

Strategy (i)-(iv) :

(i) Starting from U(0) € W9, with ¢ > 18, 0 < s < § with gs > 2, we
first prove that for any go > 2, and for any small t; > 0, we have
U(tg) € L9%. The application of above L9 bound with § = qo then
show that U is uniformly bounded in L%.

Use of heat smoothing + bilinear estimates

Lem. Let qo be such that 2 < go < 2+ 2(72 4+ v4/1 +~2). Then for any
0<ty<t<Tg Ue C([to, ta]; L%(R?)) and there is a constant
a > 0 such that

sup |U(t)|es0 < C(t %, |UO) s, | = Z5 : w—s0(T))-
te(to, t1]
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(ii) We then show an estimate on |U(t)|yy.» with v > 0 small, and p > 2,
close to 2.

@ Heat smoothing + bilinear estimates + uniform L9 bound

Lem. There exists p > 2, v € (0,1) such that forany 0 < to < t; < Tg A T

t1
| 0B 0 < (T, U@ | 22 ¢ oo T)),
t

0

sup |U(t)lwor < C(T, 157, JUQ) s, || : Z5 = w-<a(T)).

to<t<ty

for some a > 0.
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(iii) (bootstrap argument) Once we have such an estimate, by bootstrap

Lem.

arguments, we can upgrade the regularity from v > 0 close to 0 to

v < 1 close to 1.

Assume that there exist p > 2, v € (0, %) such that for any
O<to<t;< TATE

t1
[ 0@y sde+ sup |0 < €

2 D<t<n

1 s 2
Assume that ¢ € (O, % - %) satisfies “’T”La < % ~ 35 Then,

t1
/ U(E)Pyreenpdt + sup |U(E)yaren < C.
T

0 to<t<t;
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(iv) Then by the Sobolev embedding, we will obtain a bound on
[U(t)[ s
Lem. Now, repeating several times the bootstrap argument, one may thus
show a uniform bound for U in WP for some p with 2 < p < g and

l), so that

any v < %. Choosing then v = —5+2<% -1

WYP C W59, we obtain

sup_ sup |U(t)lw-sa < C(T, 5% [UO)w-sa, || : Z3 : w-sa(T)),
tlgT/\Tg tE[to,t]_]

and global existence in YW~=9 follows.
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Construction of Gibbs measure
Outline

© 2D case

@ Construction of Gibbs measure
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Existence of Gibbs measure

dp = [le— Je %|w|4dxefg<Aw.u,>dw
4 . . .
@ We cannot make sense of e~ Jzz 31%I° since [4(R2) is not in suppy. Need
a renormalization both in the equation and in the Gibbs measure.

dp — r—le— Ja2 %:‘w‘A:dX€7%<Aw'w>dw

@ (D.Robert) We cannot define directly the limit N — oo of
exp{—1% [az o |Sn|* : (X)dx} dun(¥), this problem is related to the
property of the kernel of (—A + |x|?)~%:

h
K(x,y) = 7”“’?;(”, and K ¢ L% .
kEN2 k

@ ~~ define the Gibbs measure as a limit of
- 1
() = Twesp { = [ (FIS000l* ~ 26 (SO + 268, ux) ) o f unte
W € Ey = span{ho, hy, ..., hn}
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N Lel) "<t of Gibbs measure

o Let v > 0. Considering a stationary solution
(Un, Zn) € C(Ry; EY x EY) of the coupled evolution on Ef given by

0:U =~ [HU = Sy (: |Sn(U+ Z)[2Sn(U + Z) - )]
dZ = yHZdt + /2Ny dW,

If0<s<1,g>2and gs > 2, we see that there is a constant C > 0
independent of t and N, such that

E((-H)2 Unl}2) < C.
@ The embedding W2 C L9, for any q < 400 and the fact
W54 C W9 compact if s’ > s deduce:

Theorem (de Bouard-Debussche-F. (2022))

The family of finite dimensional Gibbs measures (pn)n is tight in W—=49

forany0 < s <1, q>2s.t. gs>2. The weak limit p is an invariant
measure.
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