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Navier-Stokes and reversibility

Navier-Stokes is irreversible and non-equiibrium due to 
Viscosity and forcing

Entropy production =Dissipation

F->-F
u->-u

Creeping Flow
Euler flow

t->--t
u->-u

Reversible, Equilibrium 
Reversible, Equilibrium 

https://boingboing.net/2020/10/28/liquids-get-mixed-then-unmixed-due-to-stokes-flow.html

E=0 E=cte

Courtesy J.I. Polenco



Non-equilibrium stationary states
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# 𝑑𝑥
$= ∫𝐹. 𝑢 𝑑𝑥$- ν ∫ ∇𝑢 # 𝑑𝑥$

We impose F at given viscosity
We measure energy input needed 
to maintain E statistically constant

Traditional way:
?



Efficency of NESS of Navier-Stokes
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We impose F at given viscosity
We measure energy input needed to maintain E statistically constant
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Stored energy Efficiency
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ABSTRACT. These lectures give an account of recent results pertaining to the celebrated
Onsager conjecture. The conjecture states that the minimal space regularity needed for a
weak solution of the Euler equation to conserve energy is 1/3. Our presentation is based
on the Littlewood-Paley method. We start with quasi-local estimates on the energy flux,
introduce Onsager criticality, find a positive solution to the conjecture in Besov spaces of
smoothness 1/3. We illuminate important connections with the scaling laws of turbulence.
Results for dyadic models and a complete resolution of the Onsager conjecture for those
is discussed, as well as recent attempts to construct dissipative solutions for the actual
equation.

The article is based on a series of four lectures given at the 11th school “Mathematical
Theory in Fluid Mechanics” in Kácov, Czech Republic, May 2009.

”...in three dimensions a mechanism for
complete dissipation of all kinetic
energy, even without the aid of
viscosity, is available.”

L. Onsager, 1949

1. Lecture 1: motivation, Onsager criticality.

1.1. Onsager’s original conjecture. The motion of an ideal homogeneous (with constant
density 1) incompressible fluid is described by the system of Euler equations given by

∂u

∂t
+ (u ·∇)u = −∇p, (1)

∇ · u = 0, (2)
where u is a divergence-free velocity field, and p is the internal pressure. We assume that
the fluid domain Ω here is either periodic or the entire space. It is an easy consequence of
the antisymmetry of the nonlinear term in (1) and the incompressibility of the fluid that the
law of energy conservation holds for smooth solutions:

∫

Ω
|u(t)|2dx =

∫

Ω
|u0|2dx, for all t ≥ 0. (3)
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If  h ≤ 1/3 à Dissipation through irregularities (singularities)

` ⇡ 0In the limit of

Without viscosity !

If  h > 1/3 à Euler equation conserves energy,
Dissipation in Navier-Stokes by viscosity.

    (Eyink 1994, Constantin et al, 1994)�u(`) ⇠ `h

D u( ) x[ ]∝ limℓ→0 ℓ3h−1

Duchon&Robert. Nonlinearity  (2000),

D(u) = lim
`!0

1

4

Z

r`
d3r r�`(r) · �ur|�ur|2

Inertial dissipation= limit of local energy transfers

Regular Test function of width ℓ

(

𝛿u=u(x+r)-u(x) Velocity increment (Isett, 2018)

See Eyink&Sreenivasan  (2006)

Dissipation ‘anomaly”  and Onsager’s conjecture
Obs: dissipation does not depend on viscosity (« spontaneous symmetry breaking »)

Laminar
Prop to n Turbulent

Indep of  n

Onsager conjecture links irreversibility and singularity! I
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Inertial dissipation:

Scalar regularity indicator 𝐷ℓ"
We can use this quantity as an indicator pointing
Towards less regular regions

B. Dubrulle, JFM perspectives, 2019

(

Direct investigation using local dissipation

Local Lagrangian and
 Eulerian velocity
 measurements
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`

xz
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Supplementary figure 5: Maps of the instantaneous dimensionless coarse-grained inertial energy

dissipation D`(u) as a function of scale ` for a flow at Re ⇡ 3 ⇥ 105. a) Maps of D`(u) at three

different scales. b) Maps of D`(u) at different scales, along a line going through a peak in inertial

dissipation. The colors code D`(u). The scale is expressed in units of the grid step: 0.25 mm.

this computation, we have used a spherically symmetric function of x given by:

G`(r) =
1

N
exp(�1/(1� (r/(2`)2)), (1)

where N is a normalization constant such that
R

d
3
rG`(r) = 1. According to 1, the results should

not depend on the choice of this function, in the limit ` ! 0.

To estimate the scaling range of the extreme event, we have performed the computation of

D`(u) at different resolutions, using different averaging windows to reconstruct the velocity flow

from the same image. An example is provided in Fig. 6. One sees that, as the resolution is

increased, the region of elevated D`(u) becomes sharper and sharper, but globally remains at the

same location (emphasized by the white dot). On the other hand, the plot of D`(u) at this location
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Direct investigation using local dissipation

Courtesy A. Harekrishnan



Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

LECTURES ON THE ONSAGER CONJECTURE

ROMAN SHVYDKOY
Department of Mathematics, Stat. and Comp. Sci., M/C 249,

University of Illinois, Chicago, IL 60607, USA

(Communicated by [the associate editor name])

ABSTRACT. These lectures give an account of recent results pertaining to the celebrated
Onsager conjecture. The conjecture states that the minimal space regularity needed for a
weak solution of the Euler equation to conserve energy is 1/3. Our presentation is based
on the Littlewood-Paley method. We start with quasi-local estimates on the energy flux,
introduce Onsager criticality, find a positive solution to the conjecture in Besov spaces of
smoothness 1/3. We illuminate important connections with the scaling laws of turbulence.
Results for dyadic models and a complete resolution of the Onsager conjecture for those
is discussed, as well as recent attempts to construct dissipative solutions for the actual
equation.

The article is based on a series of four lectures given at the 11th school “Mathematical
Theory in Fluid Mechanics” in Kácov, Czech Republic, May 2009.
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Is there anyway we can capture 
quasi-singularities and 
weak solutions?



Can we just run an Euler/ NSE  equation using DNS?

Courtesy J.I. Polenco

Energy equipartition
k2 spectrum

Due to thermalization, any truncated  Euler equation 
ends in equilibrium state with k2 spectrum 
Alexakis&Brachet, 2019

Cichowlas et al, PRL, 2005

Real axisRay et al, 2011

Tygers form when 

« Thermalization » also happens for Navier-Stokes
Real axis
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From DNS to log-lattices

kx

k y

Fourier grid Log grid

Campolina&Mailybaev, 2018



LL-Euler, adaptative grid, Eqyilibrium reversible
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Singularity !

( h=2/3)

Campolina&Mailybaev, 2018

Self-similar blow up in finite time



A new protocol to capture weak solutions
𝜕! ∫

"!

# 𝑑𝑥
$= ∫𝐹. 𝑢 𝑑𝑥$- ν ∫ ∇𝑢 # 𝑑𝑥$

We impose F at given viscosity
We measure energy input needed to maintain E statistically constant

Traditional way:

Alternative way using RNS

?

We impose F at given E
We measure the viscosity needed to sustain constant E

Gallavotti, PRL, 1996

If No anomaly

Control parameter:

For weak solutions



Navier-Stokes and reversibility

F->-F
u->-u

Creeping Flow Euler flow

t->--t
u->-u

Reversible
Equilibrium 

Reversible
Equilibrium E=0

E=cte

Reversible NS

Reversible
Non-
Equilibrium 

t->--t
u->-u

E=cte

Courtesy G. Krstulovic



Log-Lattice reversible Navier-Stokes

Costa et al , 2023

K_max=270
K_max= 1768
K_max= 75 959



Log-Lattice reversible Navier-Stokes

Costa et al , 2023



DNS reversible Navier-Stokes

Costa et al , 2023

Euler thermalized
Reversible Navier-Stokes

Irreversible

Transition

Creeping flow



What is happening in the transition zone?

Costa et al , 2023

T=0.45

Courtesy G. Krstulovic



Phase transition in LL-RNS

There is a second order phase transition
Following mean field exponents



Is there anomalous dissipation?

Costa et al , 2023

No anomalous dissipation



What is the limit of infinite resolution?

Costa et al , 2023

Viscous no-dissipative
Hydrodynamic brancheEuler Dissipative weak solution ??????



What is the limit of infinite resolution?

Costa et al , 2023

Viscous no-dissipative
Hydrodynamic brancheEuler Dissipative weak solution ??????

h decrease
as
R_r decreases

Pre-thermalization



Conjecture

Costa et al , 2023



Conjecture

Costa et al , 2023

Can we observe 
these weak 
solutions?

Construction via convex integration
Matsumoto&Frisch
Buckmaster et al….
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General case with adaptative grid

Non-dissipative 
Singularity !

( h<1/3)

Costa et al, 2023

Blow-up with 
a different
exponent

Rr=0

Rr=2

a=2h-1=7/3

a



What is happening when k_max is reached?
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Conjecture (2): scenario to obtain weak solution

Forward self-similar Blow-up in finite time Backward self-similar front resulting in

( h>1/3, not dissipative) ( h<1/3, dissipative)

Thalabard  et al, 2015



Bridging classical and quantum 
turbulence



Observations

GP Equations Quantum Hydrodynamic equationsMadelung

Blow-up in finite time with boundaries



A R-quantum hydro model as a toy model for SF? 

Advantage: 
*We naturally have the phase transition
*Two fluid phase: « superfluid »= weak solution; « normal » = viscous solution
« sound »=tygers; coupling automatic between the two phases
*We can have finite dissipation by weak solutions like observed in superfluids
*Forcing is easy



Finite resolution

Costa et al , 2023

Superfluid

Normal fluid

Two fluids



Infinite resolution

Normal Fluid
Hydrodynamic branchSuperfluid branch

Euler Dissipative weak solution 

Two-fluid
Mixture 

Rrc=2.5 « Temperature »



Summary and Perspectives

• Can we get the possible weak dissipative solutions of LL-RNS?
• Are these things true for DNS-RNS?
• Is RQNS a good model of superfluid? What kind of structures are observed during 
the blow-up phase and normal fluid building?(role of quantum pressure)

Using log-lattices, we have identified in RNS a second order transition as a 
function of efficiency where the fluid changes :
from viscous Navier-Stokes flow to thermalized Euler Flow

In the infinite resolution limit, the thermalized Euler Flow could tend to 
dissipative weak solutions of Euler equation of finite energy 


