The Gross-Pitaevskii equation on a two-dimensional ring: vortex nucleation and quantum turbulence

Quentin Chauleur

Univ. Lille

July 2023

Context

People

- Currently CEMPI postdoc (2022-2024).
- PhD at Univ. Rennes (2019-2022), adv. Rémi Carles \& Erwan Faou.
- Joint work with
- mathematician Guillaume Dujardin (CR INRIA), Inria Lille.
- physicists Radu Chicireanu (CR CNRS) and Jean-Claude Garreau (DR CNRS), PhLAM.

Motivation

- Experimental setup at the PhLAM laboratory : cold atoms of potassium.
- Numerical simulations to highlight parameters for which we see vortex formation.
- Particular ring-shaped geometry in a two-dimensional setting.

Cold atom trap at the PhLAM

Figure - Laguerre-Gauss beams as atom traps, Jean-Claude Garreau.

Gross-Pitaevskii equation

After proper sizing, simulation of the Gross-Pitaevskii equation

$$
\left\{\begin{array}{l}
i \partial_{t} \psi+\frac{1}{2 m} \Delta \psi=\gamma|\psi|^{2} \psi+V \psi \tag{GP}\\
\psi(0, x)=\psi_{0}(x)
\end{array}\right.
$$

for $t \geq 0$ and $x \in \Omega \subset \mathbb{R}^{2}$, where

$$
V(t, x)=V_{\mathrm{pot}}(x)+V_{\mathrm{rot}}(t, x)
$$

- $V_{\text {pot }}$ is a trapping potential, in which evolves the quantum fluid.
- $V_{\text {rot }}$ is a rotating potential bringing energy to the system.

Trapping potential

$$
V_{\text {pot }}(r)=-V_{0} \exp \left(-2 m(r-1)^{2}\right)
$$

with $V_{0}>0$ and $r=\sqrt{x^{2}+y^{2}}$.

Rotating potential

$$
V_{\text {rot }}=V_{p} V_{\text {pot }}(r) \sin \left(n_{\theta} \theta-\Omega t\right)
$$

with $0 \leq V_{p} \leq 1, n_{\theta} \in \mathbb{N}^{*}$ and angular velocity Ω. We will typically take $V_{p} \approx 0.05$ and $n_{\theta}=6$.

Figure - Potential $V_{\text {rot }}$ at $t=0$.

Model

Geometry

$$
V_{\mathrm{pot}}(r) \text { is Gaussian } \Rightarrow|\psi|^{2} \approx 0 \text { for } r \gg 1 \text { or } r \approx 0
$$

We then consider the ring

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid r_{\min }<\sqrt{x^{2}+y^{2}}<r_{\max }\right\}
$$

with $0<r_{\text {min }}<r_{\text {max }}<2$ and $r_{\text {min }}+r_{\text {max }}=2$.

Numerical methods

- Finite Volume Scheme in space with Dirichlet conditions.
- Strang splitting method in time.
- Initial data : ground state solution for $V_{\text {rot }}=0$.

Concentrated symmetric triangulation

Figure - Concentrated symmetric triangulation with approximately 8000 triangles.

Still have to check that it satisfies the Delaunay condition (every $\theta<\pi / 2$).

Time integration

Splitting method

$$
\partial_{t} \psi=A(\psi)+B(\psi)+C(\psi)
$$

where

$$
A(\psi)=\frac{i}{2 m} \Delta \psi, \quad B(\psi)=-i V \psi, \quad C(\psi)=-i \gamma|\psi|^{2} \psi
$$

with associated flows

$$
\left\{\begin{array}{l}
u(t+\Delta t, \cdot)=\Phi_{A}^{\Delta t}(u(t, \cdot))=e^{i \frac{\Delta t}{2 m} \Delta} u(t, \cdot) \\
v(t+\Delta t, \cdot)=\Phi_{B}^{\Delta t}(v(t, \cdot))=e^{-i \int_{t}^{t+\Delta t} v(s, \cdot) \mathrm{d} s} v(t, \cdot), \\
w(t+\Delta t, \cdot)=\Phi_{C}^{\Delta t}(w(t, \cdot))=e^{-i \Delta t \gamma|w(t, \cdot)|^{2}} w(t, \cdot)
\end{array}\right.
$$

Strang splitting

$$
\psi(t+\Delta t, \cdot)=\Phi_{C}^{\Delta t / 2} \circ \Phi_{B}^{\Delta t / 2} \circ \Phi_{A}^{\Delta t} \circ \Phi_{B}^{\Delta t / 2} \circ \Phi_{C}^{\Delta t / 2}(\psi(t, \cdot))
$$

Computation of the ground state

We want to minimize the energy

$$
E(\psi)=\int_{\Omega}\left(\frac{1}{2 m}|\nabla \psi|^{2}+V_{\text {pot }}|\psi|^{2}+\frac{\gamma}{2}|\psi|^{4}\right) \mathrm{d} x
$$

under the mass constraint

$$
M(\psi)=\int_{\Omega}|\psi|^{2} \mathrm{~d} x=1
$$

Writing $\psi(t, x)=e^{-i \mu t} \varphi(x)$ with $\mu \in \mathbb{R}$, we are brought back to the nonlinear eigenvalue problem

$$
\left\{\begin{aligned}
& \mu \varphi(x)=-\frac{1}{2 m} \Delta \varphi(x)+V(x) \varphi(x)+\gamma|\varphi(x)|^{2} \varphi(x), x \in \Omega \\
& \varphi(x)=0, x \in \partial \Omega \\
& \int_{\Omega}|\varphi(x)|^{2} \mathrm{~d} x=1
\end{aligned}\right.
$$

Computation of the ground state

Semi-implicit normalized gradient flow of Faou Jézéquel 2018

$$
\left\{\begin{array}{l}
\frac{\varphi^{n+\frac{1}{2}}-\varphi^{n}}{\tau}=\frac{1}{2 m} A \varphi^{n}-V \varphi^{n+\frac{1}{2}}-\gamma\left|\varphi^{n}\right|^{2} \varphi^{n+\frac{1}{2}} \\
\varphi^{n+1}=\frac{\varphi^{n+\frac{1}{2}}}{\left\|\varphi^{n+\frac{1}{2}}\right\|}
\end{array}\right.
$$

with $\varphi^{0}=\varphi_{0}(x)$ and step size $\tau>0$. At each step, we check if

$$
E\left(\varphi^{n+1}\right)<E\left(\varphi^{n}\right)
$$

- If that is the case, move on until the stopping criterion ($\varepsilon>0$ fixed)

$$
\frac{\left\|\varphi^{n+1}-\varphi^{n}\right\|_{L^{2}(\Omega)}}{\tau} \leq \varepsilon
$$

- If not, we go back to φ^{n} with $\tau \leftarrow \tau / 2$.

Dynamics

Figure - Density $|\psi(t, \cdot)|^{2}$ for several times $t\left(m=10, V_{0}=100\right)$.

Vortex detection algorithm

- Determine the potential centers of the vortices s.t. $|\psi(n)|^{2}<t o l_{1}$.
- We construct a list \mathbb{P} :
- For each potential vortex n, we look at the values of $|\psi|^{2}$ on adjacent triangles (at distance $\lambda=1$).
- If the values of $|\psi|^{2}$ are such that $|\psi|^{2}-|\psi(n)|^{2}>t^{2} l_{2}$, we add n to \mathbb{P}, and we denote $\lambda_{n}=1$ as the characteristic distance of n.
- Otherwise, we repeat this procedure for triangles at distance $\lambda=2, \ldots, \lambda_{\text {max }}$.
At the end, for all $n \in \mathbb{P}$,

$$
|\psi(n)|^{2}<t o l_{1} \quad \text { and } \quad|\psi(j)|^{2}>|\psi(n)|^{2}+t o l_{2}
$$

for each triangle $j \in \mathbb{S}_{\lambda}(n)$ at distance $1 \leq \lambda \leq \lambda_{\text {max }}$.

- We consider each vortex n of \mathbb{P} and we look if another vortex belongs to the set $\bigcup_{\lambda=1}^{\lambda_{\max }} \mathbb{S}_{\lambda}(n)$. If so, we remove the vortex with the largest $|\psi|^{2}$ of the list \mathbb{P}.

Vortex detection

Figure - Detection algorithm applied at $t=2.8$.

Vortex indices

- For each $n \in \mathbb{P}$, we compute and sort the angles formed between circumcenters of triangle $n \&$ of the triangles $j \in \mathbb{S}_{\lambda}(n) \&$ the x line.
- We compute $\theta_{0}=\arg (\psi(j))$ associated to the triangle j of lowest angle. We then proceed for other angles $\theta_{1}, \theta_{2}, \ldots, \theta_{M}$:
- After computing θ_{m}, next angle $\tilde{\theta}_{m+1}$ is computed as an argument of the next value of ψ on the set $\mathbb{S}_{\lambda}(n)$ with anticlockwise rotation.
- We set $\theta_{m+1}:=\tilde{\theta}_{m+1}+2 k \pi$ with $k=\operatorname{argmin}_{I \in \mathbb{Z}}\left|\tilde{\theta}_{m+1}-\theta_{m}+2 \pi I\right|$.
- $\mathcal{I}(n)=\frac{\theta_{M}-\theta_{0}}{2 \pi}$.

Vortex detection

Table with position of the vortex, their characteristic distance and indices.

n	$\lambda(n)$	$\mathcal{I}(n)$
14595	3	-1
14757	3	-1
14919	3	-1
15081	3	-1
15243	3	-1
15405	3	-1
26401	2	1
26563	2	1
26725	2	1
26887	2	1
27049	2	1
27211	2	1

Conclusion

Also

- Decomposition of the wavefunction in the eigenbasis of the linearized operator.
- Computation of the velocity of the quantum fluid.

Ongoing work

- Understand the formation of vortices, compute their evolution.
- Full parametric study $\left(m, \gamma, V_{0}, V_{p}, n_{\theta}, \Omega\right)$.
- Perform the experiment and compare with the numerics.

Perspectives

- Take into account dissipative phenomenon, loss of mass.

Thanks for your attention!

