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Context

People
Currently CEMPI postdoc (2022-2024).

▶ PhD at Univ. Rennes (2019-2022), adv. Rémi Carles & Erwan Faou.
Joint work with

▶ mathematician Guillaume Dujardin (CR INRIA), Inria Lille.
▶ physicists Radu Chicireanu (CR CNRS) and Jean-Claude Garreau (DR

CNRS), PhLAM.

Motivation
Experimental setup at the PhLAM laboratory : cold atoms of
potassium.
Numerical simulations to highlight parameters for which we see vortex
formation.
Particular ring-shaped geometry in a two-dimensional setting.
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Cold atom trap at the PhLAM

Figure – Laguerre-Gauss beams as atom traps, Jean-Claude Garreau.
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Gross-Pitaevskii equation

After proper sizing, simulation of the Gross-Pitaevskii equationi∂tψ +
1

2m
∆ψ = γ|ψ|2ψ + Vψ,

ψ(0, x) = ψ0(x),
(GP)

for t ≥ 0 and x ∈ Ω ⊂ R2, where

V (t, x) = Vpot(x) + Vrot(t, x).

Vpot is a trapping potential, in which evolves the quantum fluid.
Vrot is a rotating potential bringing energy to the system.
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Trapping potential

Vpot(r) = −V0 exp
(
−2m(r − 1)2

)
with V0 > 0 and r =

√
x2 + y2.
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Rotating potential

Vrot = VpVpot(r) sin (nθθ − Ωt) ,

with 0 ≤ Vp ≤ 1, nθ ∈ N∗ and angular velocity Ω.
We will typically take Vp ≈ 0.05 and nθ = 6.

Figure – Potential Vrot at t = 0.
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Model

Geometry

Vpot(r) is Gaussian ⇒ |ψ|2 ≈ 0 for r ≫ 1 or r ≈ 0.

We then consider the ring

Ω =
{
(x , y) ∈ R2

∣∣∣ rmin <
√
x2 + y2 < rmax

}
,

with 0 < rmin < rmax < 2 and rmin + rmax = 2.

Numerical methods
Finite Volume Scheme in space with Dirichlet conditions.
Strang splitting method in time.
Initial data : ground state solution for Vrot = 0.
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Concentrated symmetric triangulation

Figure – Concentrated symmetric triangulation with approximately 8000 triangles.

Still have to check that it satisfies the Delaunay condition (every θ < π/2).
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Time integration
Splitting method

∂tψ = A(ψ) + B(ψ) + C (ψ),

where

A(ψ) =
i

2m
∆ψ, B(ψ) = −iVψ, C (ψ) = −iγ|ψ|2ψ,

with associated flows
u(t +∆t, ·) = Φ∆t

A (u(t, ·)) = e i
∆t
2m∆u(t, ·),

v(t +∆t, ·) = Φ∆t
B (v(t, ·)) = e−i

∫ t+∆t
t V (s,·)dsv(t, ·),

w(t +∆t, ·) = Φ∆t
C (w(t, ·)) = e−i∆tγ|w(t,·)|2w(t, ·).

Strang splitting

ψ(t +∆t, ·) = Φ
∆t/2
C ◦ Φ∆t/2

B ◦ Φ∆t
A ◦ Φ

∆t/2
B ◦ Φ∆t/2

C (ψ(t, ·)) .
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Computation of the ground state
We want to minimize the energy

E (ψ) =

∫
Ω

(
1

2m
|∇ψ|2 + Vpot|ψ|2 +

γ

2
|ψ|4

)
dx

under the mass constraint

M(ψ) =

∫
Ω
|ψ|2dx = 1.

Writing ψ(t, x) = e−iµtφ(x) with µ ∈ R, we are brought back to the
nonlinear eigenvalue problem

µφ(x) = − 1
2m

∆φ(x) + V (x)φ(x) + γ|φ(x)|2φ(x), x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω,∫
Ω
|φ(x)|2dx = 1.
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Computation of the ground state
Semi-implicit normalized gradient flow of Faou Jézéquel 2018

φn+ 1
2 − φn

τ
=

1
2m

Aφn − Vφn+ 1
2 − γ|φn|2φn+ 1

2 ,

φn+1 =
φn+ 1

2

∥φn+ 1
2 ∥
,

with φ0 = φ0(x) and step size τ > 0. At each step, we check if

E
(
φn+1) < E (φn) .

If that is the case, move on until the stopping criterion (ε > 0 fixed)

∥φn+1 − φn∥L2(Ω)

τ
≤ ε.

If not, we go back to φn with τ ← τ/2.
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Dynamics

Figure – Density |ψ(t, ·)|2 for several times t (m = 10, V0 = 100).
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Vortex detection algorithm

Determine the potential centers of the vortices s.t. |ψ(n)|2 < tol1.
We construct a list P :

▶ For each potential vortex n, we look at the values of |ψ|2 on adjacent
triangles (at distance λ = 1).

▶ If the values of |ψ|2 are such that |ψ|2 − |ψ(n)|2 > tol2, we add n to P,
and we denote λn = 1 as the characteristic distance of n.

▶ Otherwise, we repeat this procedure for triangles at distance
λ = 2, . . . , λmax.

At the end, for all n ∈ P,

|ψ(n)|2 < tol1 and |ψ(j)|2 > |ψ(n)|2 + tol2

for each triangle j ∈ Sλ(n) at distance 1 ≤ λ ≤ λmax.
We consider each vortex n of P and we look if another vortex belongs
to the set

⋃λmax
λ=1 Sλ(n). If so, we remove the vortex with the largest

|ψ|2 of the list P.
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Vortex detection

Figure – Detection algorithm applied at t = 2.8.
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Vortex indices
For each n ∈ P, we compute and sort the angles formed between
circumcenters of triangle n & of the triangles j ∈ Sλ(n) & the x line.
We compute θ0 = arg(ψ(j)) associated to the triangle j of lowest
angle. We then proceed for other angles θ1, θ2, . . . , θM :

▶ After computing θm, next angle θ̃m+1 is computed as an argument of
the next value of ψ on the set Sλ(n) with anticlockwise rotation.

▶ We set θm+1 := θ̃m+1 + 2kπ with k = argminl∈Z|θ̃m+1 − θm + 2πl |.
▶ I(n) = θM−θ0

2π .
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Vortex detection

Table with position of the vortex, their characteristic distance and indices.

n λ(n) I(n)
14595 3 -1
14757 3 -1
14919 3 -1
15081 3 -1
15243 3 -1
15405 3 -1
26401 2 1
26563 2 1
26725 2 1
26887 2 1
27049 2 1
27211 2 1

Q. Chauleur 07/2023 16 / 18



Conclusion

Also
Decomposition of the wavefunction in the eigenbasis of the linearized
operator.
Computation of the velocity of the quantum fluid.

Ongoing work
Understand the formation of vortices, compute their evolution.
Full parametric study (m, γ, V0, Vp, nθ, Ω).
Perform the experiment and compare with the numerics.

Perspectives
Take into account dissipative phenomenon, loss of mass.
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Thanks for your attention !
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