

The Gross-Pitaevskii equation on a two-dimensional ring: vortex nucleation and quantum turbulence

Quentin Chauleur

Univ. Lille

July 2023

Context

People

- Currently CEMPI postdoc (2022-2024).
 - ▶ PhD at Univ. Rennes (2019-2022), adv. Rémi Carles & Erwan Faou.
- Joint work with
 - mathematician Guillaume Dujardin (CR INRIA), Inria Lille.
 - physicists Radu Chicireanu (CR CNRS) and Jean-Claude Garreau (DR CNRS), PhLAM.

Motivation

- Experimental setup at the PhLAM laboratory : cold atoms of potassium.
- Numerical simulations to highlight parameters for which we see vortex formation.
- Particular ring-shaped geometry in a two-dimensional setting.

$z_R \approx 25 \,\mu\mathrm{m}$ UV window Not to scale LG Phase mask High aperture (~0.3) focalization optics ~20 µm Ring 3.6 µm "Science" vacuum chamber /e diametei ~10 cm 1.4 mm Spatial phase conjugation mask $e^{-im\varphi} \rightarrow e^{im\varphi}$ Temporal phase conjugation mirror PZT

Cold atom trap at the PhLAM

Figure - Laguerre-Gauss beams as atom traps, Jean-Claude Garreau.

Gross-Pitaevskii equation

After proper sizing, simulation of the Gross-Pitaevskii equation

$$\begin{cases} i\partial_t \psi + \frac{1}{2m} \Delta \psi = \gamma |\psi|^2 \psi + V \psi, \\ \psi(0, x) = \psi_0(x), \end{cases}$$
(GP)

for $t \geq 0$ and $x \in \Omega \subset \mathbb{R}^2$, where

$$V(t,x) = V_{\rm pot}(x) + V_{\rm rot}(t,x).$$

V_{pot} is a trapping potential, in which evolves the quantum fluid.
V_{rot} is a rotating potential bringing energy to the system.

Trapping potential

Rotating potential

$$V_{\rm rot} = V_p V_{\rm pot}(r) \sin(n_{\theta}\theta - \Omega t),$$

with $0 \le V_p \le 1$, $n_{\theta} \in \mathbb{N}^*$ and angular velocity Ω . We will typically take $V_p \approx 0.05$ and $n_{\theta} = 6$.

Figure – Potential $V_{\rm rot}$ at t = 0.

Model

Geometry

 $V_{\rm pot}(r)$ is Gaussian $\Rightarrow |\psi|^2 \approx 0$ for $r \gg 1$ or $r \approx 0$.

We then consider the ring

$$\Omega = \left\{ (x, y) \in \mathbb{R}^2 \mid r_{\min} < \sqrt{x^2 + y^2} < r_{\max} \right\},\$$

with $0 < r_{\min} < r_{\max} < 2$ and $r_{\min} + r_{\max} = 2$.

Numerical methods

- Finite Volume Scheme in space with Dirichlet conditions.
- Strang splitting method in time.
- Initial data : ground state solution for $V_{\rm rot} = 0$.

Concentrated symmetric triangulation

Figure – Concentrated symmetric triangulation with approximately 8000 triangles.

Still have to check that it satisfies the Delaunay condition (every $\theta < \pi/2$).

Time integration

Splitting method

$$\partial_t \psi = A(\psi) + B(\psi) + C(\psi),$$

where

$$A(\psi) = \frac{i}{2m} \Delta \psi, \quad B(\psi) = -iV\psi, \quad C(\psi) = -i\gamma |\psi|^2 \psi,$$

with associated flows

$$\begin{cases} u(t + \Delta t, \cdot) = \Phi_A^{\Delta t}(u(t, \cdot)) = e^{i\frac{\Delta t}{2m}\Delta}u(t, \cdot), \\ v(t + \Delta t, \cdot) = \Phi_B^{\Delta t}(v(t, \cdot)) = e^{-i\int_t^{t+\Delta t}V(s, \cdot)ds}v(t, \cdot), \\ w(t + \Delta t, \cdot) = \Phi_C^{\Delta t}(w(t, \cdot)) = e^{-i\Delta t\gamma|w(t, \cdot)|^2}w(t, \cdot). \end{cases}$$

Strang splitting

$$\psi(t + \Delta t, \cdot) = \Phi_C^{\Delta t/2} \circ \Phi_B^{\Delta t/2} \circ \Phi_A^{\Delta t} \circ \Phi_B^{\Delta t/2} \circ \Phi_C^{\Delta t/2} \left(\psi(t, \cdot)\right).$$

Computation of the ground state We want to minimize the energy

$$E(\psi) = \int_{\Omega} \left(\frac{1}{2m} |\nabla \psi|^2 + V_{\text{pot}} |\psi|^2 + \frac{\gamma}{2} |\psi|^4 \right) dx$$

under the mass constraint

$$M(\psi) = \int_{\Omega} |\psi|^2 \mathrm{d}x = 1.$$

Writing $\psi(t, x) = e^{-i\mu t}\varphi(x)$ with $\mu \in \mathbb{R}$, we are brought back to the nonlinear eigenvalue problem

$$egin{aligned} & \int \mu arphi(x) = -rac{1}{2m} \Delta arphi(x) + V(x) arphi(x) + \gamma |arphi(x)|^2 arphi(x), & x \in \Omega, \ & & arphi(x) = 0, & x \in \partial \Omega, \ & & \int_{\Omega} |arphi(x)|^2 \mathrm{d}x = 1. \end{aligned}$$

Computation of the ground state

Semi-implicit normalized gradient flow of Faou Jézéquel 2018

$$\begin{cases} \frac{\varphi^{n+\frac{1}{2}}-\varphi^n}{\tau} = \frac{1}{2m}A\varphi^n - V\varphi^{n+\frac{1}{2}} - \gamma|\varphi^n|^2\varphi^{n+\frac{1}{2}},\\ \varphi^{n+1} = \frac{\varphi^{n+\frac{1}{2}}}{\|\varphi^{n+\frac{1}{2}}\|}, \end{cases}$$

with $\varphi^0 = \varphi_0(x)$ and step size $\tau > 0$. At each step, we check if $E\left(\varphi^{n+1}\right) < E\left(\varphi^n\right)$.

• If that is the case, move on until the stopping criterion ($\varepsilon > 0$ fixed)

$$\frac{\|\varphi^{n+1}-\varphi^n\|_{L^2(\Omega)}}{\tau} \leq \varepsilon.$$

• If not, we go back to φ^n with $\tau \leftarrow \tau/2$.

Dynamics

Figure – Density $|\psi(t, \cdot)|^2$ for several times t (m = 10, V₀ = 100).

Q. Chauleur

Vortex detection algorithm

- Determine the potential centers of the vortices s.t. $|\psi(n)|^2 < tol_1$.
- We construct a list \mathbb{P} :
 - For each potential vortex n, we look at the values of |ψ|² on adjacent triangles (at distance λ = 1).
 - If the values of |ψ|² are such that |ψ|² − |ψ(n)|² > tol₂, we add n to P, and we denote λ_n = 1 as the characteristic distance of n.
 - Otherwise, we repeat this procedure for triangles at distance $\lambda = 2, \ldots, \lambda_{\max}.$

At the end, for all $n \in \mathbb{P}$,

$$|\psi(n)|^2 < tol_1$$
 and $|\psi(j)|^2 > |\psi(n)|^2 + tol_2$

for each triangle $j \in \mathbb{S}_{\lambda}(n)$ at distance $1 \leq \lambda \leq \lambda_{\max}$.

 We consider each vortex n of P and we look if another vortex belongs to the set U^{λmax}_{λ=1} S_λ(n). If so, we remove the vortex with the largest |ψ|² of the list P.

Vortex detection

Vortex indices

- For each n ∈ P, we compute and sort the angles formed between circumcenters of triangle n & of the triangles j ∈ S_λ(n) & the x line.
 We compute θ₀ = arg(ψ(j)) associated to the triangle j of lowest
 - angle. We then proceed for other angles $\theta_1, \theta_2, \ldots, \theta_M$:
 - After computing θ_m , next angle $\tilde{\theta}_{m+1}$ is computed as an argument of the next value of ψ on the set $\mathbb{S}_{\lambda}(n)$ with anticlockwise rotation.
 - We set $\theta_{m+1} := \tilde{\theta}_{m+1} + 2k\pi$ with $k = \operatorname{argmin}_{l \in \mathbb{Z}} |\tilde{\theta}_{m+1} \theta_m + 2\pi l|$.
 - ► $\mathcal{I}(n) = \frac{\theta_M \theta_0}{2\pi}.$

Vortex detection

Table with position of the vortex, their characteristic distance and indices.

n	$\lambda(n)$	$\mathcal{I}(n)$
14595	3	-1
14757	3	-1
14919	3	-1
15081	3	-1
15243	3	-1
15405	3	-1
26401	2	1
26563	2	1
26725	2	1
26887	2	1
27049	2	1
27211	2	1

Conclusion

Also

- Decomposition of the wavefunction in the eigenbasis of the linearized operator.
- Computation of the velocity of the quantum fluid.

Ongoing work

- Understand the formation of vortices, compute their evolution.
- Full parametric study (m, γ , V_0 , V_p , n_{θ} , Ω).
- Perform the experiment and compare with the numerics.

Perspectives

• Take into account dissipative phenomenon, loss of mass.

Thanks for your attention !