Numerical methods for computing ground states of spinor Bose-Einstein condensates

Yongyong Cai
Beijing Normal University
joint with: W. Bao, W. Liu, Z. Wen, X. Wu, T. Tian, L. Wen, W. M. Liu,
J. M. Zhang, J. Hu

Bridging Classical and Quantum Turbulence, IES, Cargese, July 7, 2023
(1) Single component BEC
(2) Gradient flow with Lagrange multiplier
(3) Pseudospin- $1 / 2$ system
4) Spin- 1 system
(5) General spin-F
(6) Conclusion

Bose-Einstein Condensation

- Bose-Einstein condensation (BEC) is a state where the bosons collapse into the lowest quantum state near temperature absolute zero.
- Predicted by Satyendra Nath Bose and Albert Einstein in 1924-1925
- First experiments in 1995, Science 269 (E. Cornell and C. Wieman et al., ${ }^{87} \mathrm{Rb}$ JILA), PRL 75 (Ketterle et al., ${ }^{23} \mathrm{Na}$ MIT) and PRL 75 (Hulet et al., ${ }^{7}$ Li Rice).

Mathematical model for BEC at extremely low temperature

- Quantum N-body problem
- $3 N+1$ dim linear Schrödinger equation
- Mean-field theory: weakly interacting dilute ultra cold gases
- Gross-Pitaevskii equation (GPE): $T \ll T_{c}$
- 3+1 dim NLSE with cubic nonlinearity and external potential

Mathematical model for BEC with N identical bosons

- N-body problem: $3 N+1$ dim linear Schrödinger equation

$$
\begin{aligned}
& i \hbar \partial_{t} \Psi_{N}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}, t\right)=H_{N} \Psi_{N}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}, t\right) \text { with } \\
& H_{N}=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \Delta_{j}+V\left(\mathbf{x}_{j}\right)\right)+\sum_{1 \leq j<k \leq N} V_{\mathrm{int}}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)
\end{aligned}
$$

- Hatree anstaz: $\Psi_{N}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, t\right)=\prod_{j=1}^{N} \psi\left(\mathbf{x}_{j}, t\right), \quad \mathbf{x}_{j} \in \mathbb{R}^{3}$
- Ultracold dilute regime: $V_{\text {int }}\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right) \approx g \delta\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)$, with $g=\frac{4 \pi \hbar^{2} a_{s}}{m}$
- Ultracold dilute quantum gas: two-body interactions
$E_{N}\left(\Psi_{N}\right)=\int_{\mathbb{R}^{3 N}} \bar{\Psi}_{N} H_{N} \Psi_{N} d \mathbf{x}_{1} \cdots d \mathbf{x}_{N} \approx N E(\psi)---$ Energy per particle

GPE-Mean field model

- Mathematical model- by Gross 1961, Pitaevskii 1961

$$
i \partial_{t} \psi(\mathbf{x}, t)=\left[-\frac{1}{2} \nabla^{2}+V(\mathbf{x})+\beta|\psi|^{2}\right] \psi(\mathbf{x}, t)
$$

with normalization condition

$$
\|\psi(\cdot, t)\|_{2}^{2}=\int_{\mathbb{R}^{d}}|\psi(\mathbf{x}, t)|^{2} d \mathbf{x}=1
$$

- ψ : complex wave-function; $V(\mathbf{x})$ trapping potential
- $\beta>0$-defocusing (repulsive); $\beta<0$-focusing (attractive)
- Mass conservation

$$
\|\psi(\cdot, t)\|_{L^{2}}^{2}=\int_{\mathbb{R}^{d}}|\psi(x, t)|^{2} d x=\int_{\mathbb{R}^{d}}|\psi(x, 0)|^{2} d x=\|\psi(\cdot, 0)\|_{L^{2}}
$$

- Energy conservation

$$
E(\psi(\cdot, t)):=\int_{\mathbb{R}^{d}}\left[\frac{1}{2}|\nabla \psi|^{2}+V(\mathbf{x})|\psi|^{2}+\frac{\beta|\psi|^{4}}{2}\right] d x=E(\psi(\cdot, 0))
$$

Ground state and dynamics

- Ground state: nonconvex minimization problem

$$
E\left(\phi_{g}\right)=\min _{\phi \in S} E(\phi), \quad S=\{\phi \mid\|\phi\|=1, E(\phi)<\infty\}
$$

- Existence\&uniqueness: Lieb et al. 00'; Bao\&Cai, KRM, 13'
- Numerics: Normalized gradient flow (Bao\&Du 04'), imaginary time (Succi, Tosi et. al., 00')
- Nonlinear eigenvalue problem (Euler-Lagrange eq.)

$$
\mu \phi=\left[-\frac{1}{2} \Delta+V(\mathbf{x})+\beta|\phi|^{2}\right] \phi, \quad\|\phi\|_{2}=1
$$

- Computation: minimize energy functional/ direct eigenvalue solver

Existing methods for ground state

- Normalized gradient flow (NGF): Gradient flow with discrete normalization (GFDN): W. Bao \& Q. Du (SISC, 2004); W. Bao, I.-L. Chern \& F.Y. Lim (JCP, 2006); M.L. Chiofalo, S. Succi \& M.P. Tosi (PRE, 2000) ...
- Continuous normalized gradient flow (CNGF): W. Bao \& Q. Du (SISC, 2004); W. Bao \& H. Wang (SINUM, 2007); H. Wang (JCP, 2014) ...
- Direct minimization by FEM: W. Bao \& W. Tang (JCP, 2002)
- Sobolev gradient method: I. Danaila \& P. Kazemi (SISC, 2010)
- Preconditioned conjugate gradient (PCG): X. Antoine, A. Levitt \& Q.Tang (JCP, 2017)
- Regularized Newton method: X. Wu, Z. Wen \& W. Bao (JSC, 2017)
- Riemannian optimization method: I. Danaila \& B. Protas (SISC, 2017); T. Tian, Y. Cai, X. Wu\& Z. Wen (SISC,2020)
- SAV + penalty term: Q. Zhuang \& J. Shen (JCP, 2019)
- Accelerated gradient flow: H. Chen, G. Dong, W. Liu\& Z. Xie (JCP, 2023)
- ...
- Nonlinear eigenvalue solvers: A. Zhou, (Nonlinearity, 2003), E. Cancés, R. Chakir \& Y. Maday (JSC, 2010); J.H. Chen, I. L. Chern \& W. Wang (JCP, 2011), N. Zhang, F. Xu\& H. Xie(IJNAM, 2019) ...

Normalized gradient flow

- Gradient flow with discrete normalization (imaginary time):
- Idea: steepest descent + projection (Bao\&Du, 04')

$$
\begin{aligned}
& \phi_{t}=-\frac{1 \delta E(\phi)}{2} \frac{1}{\delta \phi}=\frac{1}{2} \Delta \phi-V(\mathrm{x}) \phi-\beta|\phi|^{2} \phi, \mathrm{x} \in U, t_{n}<t<t_{n+1}, n \geq 0, \\
& \phi\left(\mathrm{x}, t_{n+1}\right) \stackrel{\Delta}{=} \phi\left(\mathrm{x}, t_{n+1}^{+}\right)=\frac{\phi\left(\mathrm{x}, t_{n+1}^{-}\right)}{\left\|\phi\left(\cdot t_{n+1}^{-}\right)\right\|_{2}}, \quad \mathrm{x} \in U, \quad n \geq 0, \\
& \phi(\mathrm{x}, t)=0, \quad \mathrm{x} \in \Gamma, \quad \phi(\mathrm{x}, 0)=\phi_{0}(\mathrm{x}), \quad \mathrm{x} \in U,
\end{aligned}
$$

- Step 1: Apply steepest descent method to unconstrained problem
- Step 2: Project back to satisfy the constraint
- $\beta=0$ linear case:
- $0<\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots$ eigenvalues of $-\frac{1}{2} \nabla^{2}+V(\mathbf{x})$ with eigenfunction ϕ_{k}
- initial $\phi=\sum_{k} w_{k} \phi_{k}$, the gradient flow/imaginary time propagation

$$
\phi(t)=\sum_{k} e^{-t \lambda_{k}} w_{k} \phi_{k}, \quad t>0
$$

- all modes damping out (normalization), but the speed is different

Continuous normalized gradient flow

GFDN is a first-order splitting scheme for the continuous normalized gradient flow (CNGF)

$$
\frac{\partial \phi}{\partial t}=\frac{1}{2} \Delta \phi-V(\mathbf{x}) \phi-\beta|\phi|^{2} \phi+\mu(\phi, t) \phi
$$

by choosing $\mu(\phi, t)=\frac{\int_{\mathbb{R}^{d}}\left[\frac{1}{2}|\nabla \phi|^{2}+V(\mathrm{x})|\phi|^{2}+\beta|\phi|^{4}\right] d \mathrm{x}}{\|\phi(\cdot, t)\|^{2}}$ properly
-

$$
\int|\phi(x, t)|^{2} d x=\int|\phi(x, 0)|^{2} d x
$$

-

$$
E\left(\phi\left(\cdot, t_{2}\right)\right) \leq E\left(\phi\left(\cdot, t_{1}\right)\right), \quad t_{1}<t_{2}
$$

projection step is equivalent to solve

$$
\partial_{t} \phi=\mu(\phi, t) \phi
$$

Linearized Backward Euler discretization

- A practical linearized backward Euler finite difference discretization

$$
\begin{aligned}
& \frac{\phi_{j}^{*}-\phi_{j}^{n}}{\tau}=\frac{1}{2} \delta_{x}^{2} \phi_{j}^{*}-V\left(x_{j}\right) \phi_{j}^{*}-\beta\left(\phi_{j}^{n}\right)^{2} \phi_{j}^{*} \\
& \phi_{0}^{*}=\phi_{M}^{*}=0, \quad \phi_{j}^{0}=\phi_{0}\left(x_{j}\right), \quad \phi_{j}^{n+1}=\frac{\phi_{j}^{*}}{\left\|\phi^{*}\right\|_{2}}
\end{aligned}
$$

- local convergence (exponential) towards the ground state (1D case), E. Faou and T.Jézéquel (IMAJNA, 2018)
- Only the above time discretization leads to the correct ground state, other leads to the ground state of a modified system ($O(\tau)$ error)
- GFDN-the gradient flow part: $\partial_{t} \phi=\frac{1}{2} \nabla^{2} \phi-V(\mathbf{x}) \phi-\beta|\phi|^{2} \phi$. If $\phi(x, 0)=\phi_{g}, \phi(x, t) \notin \operatorname{span}\left\{\phi_{g}\right\}\left(\left.\partial_{t} \phi(x, t)\right|_{t=0}=-\mu_{g} \phi_{g}\right)$, GFDN itself can not converge to the correct ground state ϕ_{g} for $\tau>0$.

GFDN and its time discretizations

- linearized backward Euler scheme (GFDN-BE):

$$
\frac{\phi^{(1)}-\phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \phi^{(1)}-V(\mathbf{x}) \phi^{(1)}-\beta\left|\phi^{n}\right|^{2} \phi^{(1)}
$$

- backward-forward Euler scheme (GFDN-BF):

$$
\frac{\phi^{(1)}-\phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \phi^{(1)}-\alpha \phi^{(1)}+\left(\alpha-V(\mathbf{x})-\beta\left|\phi^{n}\right|^{2}\right) \phi^{n}
$$

where $\alpha=\alpha\left(\phi^{n}\right) \geq 0$ is a stabilization parameter

- semi-implicit Euler scheme:

$$
\frac{\phi^{(1)}-\phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \phi^{(1)}-V(\mathbf{x}) \phi^{(1)}-\beta\left|\phi^{n}\right|^{2} \phi^{n}
$$

- fully implicit Euler scheme:

$$
\frac{\phi^{(1)}-\phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \phi^{(1)}-V(\mathbf{x}) \phi^{(1)}-\beta\left|\phi^{(1)}\right|^{2} \phi^{(1)}
$$

followed by a projection step $\phi^{n+1}=\phi^{(1)} /\left\|\phi^{(1)}\right\|$

GFDN-BE

- GFDN-BE:

$$
\frac{\phi^{(1)}-\phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \phi^{(1)}-V(\mathbf{x}) \phi^{(1)}-\beta\left|\phi^{(n)}\right|^{2} \phi^{(1)}, \quad \phi^{n+1}=\phi^{(1)} /\left\|\phi^{(1)}\right\|
$$

- For convergent state, $\phi^{n+1}=\phi^{(1)} /\left\|\phi^{(1)}\right\|=\phi^{n}, \phi^{(1)}=c \phi^{n}\left(c=\left\|\phi^{(1)}\right\|\right)$, GFDN-BE leads to

$$
\frac{1-c}{c \tau} \phi^{n}=-\frac{1}{2} \nabla^{2} \phi^{n}-V(\mathbf{x}) \phi^{n}+\beta\left|\phi^{n}\right|^{2} \phi^{n}
$$

which is exactly the Euler-Lagrange equation for the stationary states of GPE

- GFDN-BE has been the most widely used scheme, a variable coefficient elliptic equation to be solved at each time step

GFDN-BF

- GFDN-BF:

$$
\frac{\phi^{(1)}-\phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \phi^{(1)}-\alpha \phi^{(1)}+\left(\alpha-V(\mathbf{x})-\beta\left|\phi^{n}\right|^{2}\right) \phi^{n}, \quad \phi^{n+1}=\phi^{(1)} /\left\|\phi^{(1)}\right\|
$$

- For convergent state, $\phi^{n+1}=\phi^{(1)} /\left\|\phi^{(1)}\right\|=\phi^{n}, \phi^{(1)}=c \phi^{n}\left(c=\left\|\phi^{(1)}\right\|\right)$, GFDN-BF leads to

$$
\left(\frac{1}{\tau}+\alpha\right)(1-c) \phi^{n}=-\frac{c}{2} \nabla^{2} \phi^{n}+V(\mathbf{x}) \phi^{n}+\beta\left|\phi^{n}\right|^{2} \phi^{n}
$$

In general $c \neq 0, \phi^{n}$ is not the solution to the correct Euler-Lagrange equation (modified coefficient $O(\tau)$)

- GFDN-BF produce a solution with time step dependent error $O(\tau)$, only a constant coefficient elliptic equation to be solved at each time step
- Similar conclusions hold for other typical temporal discretizations, the convergent solutions always have $O(\tau)$ error; GFDN-BE the most widely used method (correctly capture the solution, no τ-dependent error)

Gradient flow with Lagrange multiplier

- Gradient flow with Lagrange multiplier (GFLM)

$$
\begin{aligned}
& \phi_{t}=\frac{1}{2} \nabla^{2} \phi-V(\mathbf{x}) \phi-\beta|\phi|^{2} \phi+\mu_{\phi}\left(t_{n}\right) \phi\left(\mathbf{x}, t_{n}\right), \quad \mathbf{x} \in U, \quad t \in\left[t_{n}, t_{n+1}\right) \\
& \phi\left(\mathbf{x}, t_{n+1}\right):=\phi\left(\mathbf{x}, t_{n+1}^{+}\right)=\frac{\phi\left(\mathbf{x}, t_{n+1}^{-}\right)}{\left\|\phi\left(\cdot, t_{n+1}^{-}\right)\right\|}, \quad \mathbf{x} \in U, \quad n=0,1, \ldots \\
& \phi\left(\mathbf{x}, t_{0}\right)=\phi_{0}(\mathbf{x}), \quad \mathbf{x} \in U \\
& \text { where }\left\|\phi_{0}\right\|=1 \text { and } \\
& \mu_{\phi}\left(t_{n}\right)=\mu\left(\phi\left(\cdot, t_{n}\right)\right)=\int_{U}\left[\frac{1}{2}\left|\nabla \phi\left(\mathbf{x}, t_{n}\right)\right|^{2}+V(\mathbf{x})\left|\phi\left(\mathbf{x}, t_{n}\right)\right|^{2}+\beta\left|\phi\left(\mathbf{x}, t_{n}\right)\right|^{4}\right] d \mathbf{x} .
\end{aligned}
$$

- For the initial state with $\phi_{0}=\phi_{g},\left.\partial_{t} \phi(x, t)\right|_{t=0}=0$ and the normalization factor becomes $\left\|\phi\left(\cdot, t_{n+1}^{-}\right)\right\|=1$, GFLM preserves the ground state ϕ_{g}
- Advantage: time discretization for GFLM is very flexible
- GFLM is kind of approximation to CNGF; the Lagrange multiplier term can be introduced in other forms

Forward Euler discretization

- Forward Euler discretization (GFLM-FE)

$$
\frac{\phi^{(1)}-\phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \phi^{n}-V(\mathbf{x}) \phi^{n}-\beta\left|\phi^{n}\right|^{2} \phi^{n}+\mu\left(\phi^{n}\right) \phi^{n}, \quad \phi^{n+1}=\frac{\phi^{(1)}}{\left\|\phi^{(1)}\right\|} .
$$

- Energy decay

Lemma

Let $V(\mathbf{x}) \geq 0$ and $\beta \geq 0$, assuming ϕ^{n} is sufficiently smooth, there exists $\tau_{n}>0$ such that for $0<\tau \leq \tau_{n}$, we have the energy decreasing property of the forward Euler discretization

$$
\begin{equation*}
E\left(\phi^{n+1}\right) \leq E\left(\phi^{n}\right) . \tag{3.1}
\end{equation*}
$$

Backward-forward discretization

- backward-forward Euler scheme for the GFLM (GFLM-BF):

$$
\frac{\phi^{(1)}-\phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \phi^{(1)}-\alpha \phi^{(1)}+\left(\alpha-V(\mathbf{x})-\beta\left|\phi^{n}\right|^{2}\right) \phi^{n}+\mu^{n} \phi^{n}, \quad \phi^{n+1}=\frac{\phi^{(1)}}{\| \phi^{(1)} \mid}
$$

where $\mu^{n}=\mu\left(\phi^{n}\right)$ and $\alpha=\alpha\left(\phi^{n}\right) \geq 0$ is a stabilization parameter.

- Advantage: only a linear elliptic equation with constant coefficients needs to be solved at each time step.
- Energy decay for a modified energy

$$
E_{\phi^{n}}(\varphi)=\int_{U}\left(\frac{1}{2}|\nabla \varphi|^{2}+V(\mathbf{x})|\varphi|^{2}+\beta\left|\phi^{n}\right|^{2}|\varphi|^{2}\right) d \mathbf{x}
$$

Lemma

Let $0 \leq V(\mathbf{x}) \in L^{\infty}(U)$ and $\beta \geq 0$, assuming $\phi^{n} \in L^{\infty}(U)$ and $\alpha\left(\phi^{n}\right) \geq \frac{1}{2} \max \left\{V(\mathbf{x})+\beta\left|\phi^{n}(\mathbf{x})\right|^{2}-\mu^{n}, 0\right\}$, then for any $\tau>0$, we have the modified energy decreasing property of the backward-forward Euler discretization

$$
E_{\phi^{n}}\left(\phi^{n+1}\right) \leq E_{\phi^{n}}\left(\phi^{n}\right)=\mu^{n} .
$$

Linearized backward Euler discretization

- Linearized backward Euler scheme (GFLM-BE):

$$
\frac{\phi^{(1)}-\phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \phi^{(1)}-V(\mathbf{x}) \phi^{(1)}-\beta\left|\phi^{n}\right|^{2} \phi^{(1)}+\mu^{n} \phi^{n}, \quad \phi^{n+1}=\frac{\phi^{(1)}}{\left\|\phi^{(1)}\right\|}
$$

- At each time step, a linear equation with different variable coefficients has to be solved.
- The following results modified energy stability holds:

Lemma

Let $V(\mathbf{x}) \geq 0$ and $\beta \geq 0$, for any $\tau>0$, we have the modified energy decreasing property of the backward Euler discretization:

$$
E_{\phi^{n}}\left(\phi^{n+1}\right) \leq E_{\phi^{n}}\left(\phi^{n}\right)=\mu^{n} .
$$

- Other schemes (e.g., semi-implicit Euler, fully implicit Euler) can be also applied, either use $\left\|\phi^{n+1}-\phi^{n}\right\| / \tau<\varepsilon$ or $\left\|\phi^{(1)}-\phi^{n}\right\| / \tau<\varepsilon$.

Numerical results

Table: Numerical results for computing the ground state solution by different numerical schemes. $\varepsilon=10^{-12}$

Method	τ	$\mathrm{CPU}(\mathrm{s})$	E_{g}	μ_{g}	maxres
	1	0.15	26.0838621101	38.0692256090	$3.77 \mathrm{E}-11$
	0.1	0.14	26.0838621101	38.0692256090	$5.01 \mathrm{E}-12$
GFDN-BE	0.01	0.23	26.0838621101	38.0692256090	$1.53 \mathrm{E}-12$
	0.001	0.90	26.0838621101	38.0692256090	$1.07 \mathrm{E}-12$
	0.0001	5.17	26.0838621101	38.0692256090	$1.24 \mathrm{E}-12$
	1	-	-	-	-
	0.1	0.01	26.0871697701	38.1045011672	$9.57 \mathrm{E}-02$
GFDN-BF	0.01	0.02	26.0846116885	38.0859327897	$4.31 \mathrm{E}-02$
	0.001	0.14	26.0838815318	38.0718949777	$6.72 \mathrm{E}-03$
	0.0001	1.22	26.0838623305	38.0695095005	$7.12 \mathrm{E}-04$
	1	0.08	26.0838621101	38.0692256091	$3.65 \mathrm{E}-11$
	0.1	0.08	26.0838621101	38.0692256090	$8.55 \mathrm{E}-12$
GFLM-BE	0.01	0.14	26.0838621101	38.0692256090	$1.76 \mathrm{E}-12$
	0.001	0.55	26.0838621101	38.0692256090	$1.10 \mathrm{E}-12$
	0.0001	3.91	26.0838621101	38.0692256090	$1.15 \mathrm{E}-12$
	1	0.01	26.0838621101	38.0692256091	$7.48 \mathrm{E}-11$
	0.1	0.02	26.0838621101	38.0692256090	$8.67 \mathrm{E}-12$
GFLM-BF	0.01	0.03	26.0838621101	38.0692256090	$1.79 \mathrm{E}-12$
	0.001	0.22	26.0838621101	38.0692256090	$1.11 \mathrm{E}-12$
	0.0001	2.01	26.0838621101	38.0692256090	$9.76 \mathrm{E}-13$

Pseudo spin-1/2 BEC

- Binary BEC can be used as a model producing coherent atomic beams (J. Schneider, Appl. Phys. B, 69 (1999))
- First experiment concerning with the binary BEC was performed in JILA with with $\left|F=2, m_{f}=2\right\rangle$ and $|1,-1\rangle$ spin states of ${ }^{87}$ Rb. (C. J. Myatt et al.,Phys. Rev. Lett., 78 (1997))

spin-1/2 BEC

- Coupled Gross-Pitaevskii equations: $\psi:=\left(\psi_{1}(\mathbf{x}, t), \psi_{2}(\mathbf{x}, t)\right)^{T}$

$$
\begin{aligned}
& i \partial_{t} \psi_{1}=\left[-\frac{1}{2} \nabla^{2}+V_{1}+\frac{\delta}{2}+\left(\beta_{11}\left|\psi_{1}\right|^{2}+\beta_{12}\left|\psi_{2}\right|^{2}\right)\right] \psi_{1}+\frac{\Omega}{2} \psi_{2} \\
& i \partial_{t} \psi_{2}=\left[-\frac{1}{2} \nabla^{2}+V_{2}-\frac{\delta}{2}+\left(\beta_{21}\left|\psi_{1}\right|^{2}+\beta_{22}\left|\psi_{2}\right|^{2}\right)\right] \psi_{2}+\frac{\Omega}{2} \psi_{1}
\end{aligned}
$$

- Trapping potential: $V_{j}(\mathbf{x})$
- Interaction constants: $\beta_{j l}$ between j-th and l-th component
- Ω : Rabi frequency (internal Josephson junction)
- δ : detuning constant for Raman transition

Conserved quantities

- Mass:

$$
N(t):=\|\Psi(\cdot, t)\|^{2}=\int_{\mathbb{R}^{d}}\left[\left|\psi_{1}(\mathbf{x}, t)\right|^{2}+\left|\psi_{2}(\mathbf{x}, t)\right|^{2}\right] d \mathbf{x} \equiv N(0)=1
$$

- Energy per particle

$$
\begin{aligned}
E(\Psi)= & \int_{\mathbb{R}^{d}}\left[\sum_{j=1}^{2}\left(\frac{1}{2}\left|\nabla \psi_{j}\right|^{2}+V_{j}(\mathbf{x})\left|\psi_{j}\right|^{2}\right)+\frac{\delta}{2}\left(\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}\right)\right. \\
& \left.+\Omega \operatorname{Re}\left(\psi_{1} \bar{\psi}_{2}\right)+\frac{\beta_{11}}{2}\left|\psi_{1}\right|^{4}+\frac{\beta_{22}}{2}\left|\psi_{2}\right|^{4}+\beta_{12}\left|\psi_{1}\right|^{2}\left|\psi_{2}\right|^{2}\right] d \mathbf{x}
\end{aligned}
$$

- Ground state patterns

Ground States

- Nonconvex minimization problem

$$
E_{g}:=E\left(\Phi_{g}\right)=\min _{\Phi \in S} E(\Phi)
$$

and

$$
S:=\left\{\Phi=\left(\phi_{1}, \phi_{2}\right)^{T} \in H^{1}\left(\mathbb{R}^{d}\right)^{2} \mid\|\Phi\|^{2}=1, E(\Phi)<\infty\right\}
$$

- Nonlinear Eigenvalue problem (Euler-Lagrange eq.)

$$
\begin{aligned}
& \mu \phi_{1}=\left[-\frac{1}{2} \nabla^{2}+V_{1}(\mathbf{x})+\frac{\delta}{2}+\left(\beta_{11}\left|\phi_{1}\right|^{2}+\beta_{12}\left|\phi_{2}\right|^{2}\right)\right] \phi_{1}+\frac{\Omega}{2} \phi_{2} \\
& \mu \phi_{2}=\left[-\frac{1}{2} \nabla^{2}+V_{2}(\mathbf{x})-\frac{\delta}{2}+\left(\beta_{12}\left|\phi_{1}\right|^{2}+\beta_{22}\left|\phi_{2}\right|^{2}\right)\right] \phi_{2}+\frac{\Omega}{2} \phi_{1}
\end{aligned}
$$

Gradient Flow Discrete Normalized (GFDN)

- Numerical methods for computing the ground state

$$
\left\{\begin{array}{l}
\frac{\partial \phi_{1}}{\partial t}=\frac{1}{2} \Delta \phi_{1}-V(x) \phi_{1}-\left(\beta_{11}\left|\phi_{1}\right|^{2}+\beta_{12}\left|\phi_{2}\right|^{2}\right) \phi_{1}-\Omega \phi_{2} \\
\quad-\frac{\delta}{2} \phi_{1}-\mu\left(\phi_{1}\left(t_{n}\right), \phi_{2}\left(t_{n}\right)\right) \phi_{1}, \quad t_{n}<t<t_{n+1} \\
\frac{\partial \phi_{2}}{\partial t}=\frac{1}{2} \Delta \phi_{2}-V(x) \phi_{2}-\left(\beta_{12}\left|\phi_{1}\right|^{2}+\beta_{22}\left|\phi_{2}\right|^{2}\right) \phi_{2}-\Omega \phi_{1}, \\
\quad+\frac{\delta}{2} \phi_{1}-\mu\left(\phi_{1}\left(t_{n}\right), \phi_{2}\left(t_{n}\right)\right) \phi_{2}, \quad t_{n}<t<t_{n+1} \\
\phi_{1}\left(x, t_{n+1}\right) \triangleq \phi_{1}\left(x, t_{n+1}^{+}\right)=\frac{\phi_{1}\left(x, t_{n+1}^{-}\right)}{\left(\left\|\phi_{1}\left(\cdot, t_{n+1}^{-}\right)\right\|_{2}^{2}+\left\|| | \phi_{2}\left(\cdot, t_{n+1}^{-}\right)\right\|_{2}^{2}\right)^{1 / 2}}, \\
\phi_{2}\left(x, t_{n+1}\right) \triangleq \phi_{2}\left(x, t_{n+1}^{+}\right)=\frac{\phi_{2}\left(x, t_{n+1}^{-}\right)}{\left(\left\|\phi_{1}\left(\cdot, t_{n+1}^{-}\right)\right\|_{2}^{2}+\left\|\phi_{2}\left(\cdot, t_{n+1}^{-}\right)\right\|_{2}^{2}\right)^{1 / 2}} \\
\phi_{1}(x, 0)=\phi_{1}^{0}(x), \quad \phi_{2}(x, 0)=\phi_{2}^{0}(x) .
\end{array}\right.
$$

Continuous Normalized Gradient Flow

DNGF is a splitting scheme for

$$
\left\{\begin{aligned}
\frac{\partial \phi_{1}}{\partial t}= & \frac{1}{2} \Delta \phi_{1}-V(x) \phi_{1}-\left(\beta_{11}\left|\phi_{1}\right|^{2}+\beta_{12}\left|\phi_{2}\right|^{2}\right) \phi_{1} \\
& -\Omega \phi_{2}-\frac{\delta}{2} \phi_{1}+\mu\left(\phi_{1}, \phi_{2}, t\right) \phi_{1} \\
\frac{\partial \phi_{2}}{\partial t}= & \frac{1}{2} \Delta \phi_{2}-V(x) \phi_{2}-\left(\beta_{12}\left|\phi_{1}\right|^{2}+\beta_{22}\left|\phi_{2}\right|^{2}\right) \phi_{2} \\
& -\Omega \phi_{1}+\frac{\delta}{2} \phi_{2}+\mu\left(\phi_{1}, \phi_{2}, t\right) \phi_{2}
\end{aligned}\right.
$$

by choosing $\mu\left(\phi_{1}, \phi_{2}, t\right)$ properly

$$
\int|\Phi(x, t)|^{2} d x=\int|\Phi(x, 0)|^{2} d x
$$

-

$$
E\left(\Phi\left(\cdot, t_{2}\right)\right) \leq E\left(\Phi\left(\cdot, t_{1}\right)\right), \quad t_{1}<t_{2}
$$

projection step is equivalent to solve

$$
\partial_{t} \phi_{j}=\mu\left(\phi_{1}, \phi_{2}, t\right) \phi_{j}, \quad j=1,2
$$

- $\beta_{11}=\beta_{22}, \Omega=\delta=0$, box potential (width L)
- mixing factor: $\eta=2 \int \phi_{1} \phi_{2}$

- Exist $\beta_{c}>\beta$, when $\beta_{12} \leq \beta_{c}, \eta=1$

Spin-1 BEC

- Order parameter $\Psi=\left(\psi_{1}, \psi_{0}, \psi_{-1}\right)$ in the mean-field description
- Spin-1 GPE

$$
i \partial_{t} \Psi=\left[H+\beta_{0} \rho-p f_{z}+q f_{z}^{2}+\beta_{1} \mathbf{F} \cdot \mathbf{f}\right] \Psi
$$

- $H=-\frac{1}{2} \nabla^{2}+V(\mathbf{x}), \rho=|\Psi|^{2}=\sum_{l=-1}^{1}\left|\psi_{l}\right|^{2}$
- $\mathbf{F}=\left(F_{x}, F_{y}, F_{z}\right)^{T}=\left(\Psi^{*} \mathrm{f}_{x} \Psi, \Psi^{*} \mathrm{f}_{y} \Psi, \Psi^{*} \mathrm{f}_{z} \Psi\right)^{T}$
- spin-1 matrices $\mathbf{f}=\left(\mathrm{f}_{x}, \mathrm{f}_{y}, \mathrm{f}_{z}\right)^{T}$ as

$$
\mathrm{f}_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \mathrm{f}_{y}=\frac{i}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad \mathrm{f}_{z}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

- p and q are the linear and quadratic Zeeman terms.

Energy and ground states

- Energy:

$$
E(\Psi(\cdot, t))=\int_{\mathbb{R}^{d}}\left\{\sum_{l=-1}^{1}\left(\frac{1}{2}\left|\nabla \psi_{l}\right|^{2}+\left(V(\mathbf{x})-p l+q l^{2}\right)\left|\psi_{l}\right|^{2}\right)+\frac{\beta_{0}}{2}|\Psi|^{4}+\frac{\beta_{1}}{2}|\mathbf{F}|^{2}\right\}
$$

- Mass constraint

$$
N(\Psi(\cdot, t)):=\|\Psi(\cdot, t)\|^{2}=\int_{\mathbb{R}^{d}} \sum_{l=-1,0,1}\left|\psi_{l}(\mathbf{x}, t)\right|^{2} d \mathbf{x}=N(\Psi(\cdot, 0))=1
$$

- Magnetization $(M \in[-1,1])$

$$
M(\Psi(\cdot, t)):=\left.\int_{\mathbb{R}^{d}} \sum_{l=-1,0,1}| | \psi_{l}(\mathbf{x}, t)\right|^{2} d \mathbf{x}=M(\Psi(\cdot, 0))=M
$$

- Ground state- Find $\left(\Phi_{g} \in S_{M}\right)$ such that $E_{g}:=E\left(\Phi_{g}\right)=\min _{\Phi \in S_{M}} E(\Phi)$

$$
S_{M}=\left\{\Phi \mid\|\Phi\|=1, \int_{\mathbb{R}^{d}}\left[\left|\phi_{1}(\mathbf{x})\right|^{2}-\left|\phi_{-1}(\mathbf{x})\right|^{2}\right] d \mathbf{x}=M, E(\Phi)<\infty\right\}
$$

Euler-Lagrange equation

- Euler-Lagrange equation associated with ground state:

$$
\left(\mu \mathbf{l}_{3}+\lambda \mathbf{f}_{z}\right) \Phi=\left[-\frac{1}{2} \nabla^{2}+V(\mathbf{x})+\mathbf{A}(\Phi)+\mathbf{B}(\Phi)\right] \Phi=: \mathbf{H}(\Phi) \Phi
$$

- μ / λ is the Lagrange multipliers corresponding to the normalization/ magnetization constraint
- Hermitian matrices:

$$
\begin{aligned}
\mathbf{A}(\Phi) & =\operatorname{diag}\left(a_{1}, a_{0}, a_{-1}\right), \quad \mathbf{B}(\Phi)=\beta_{1}\left(\begin{array}{ccc}
0 & \phi_{0} \bar{\phi}_{-1} & 0 \\
\bar{\phi}_{0} \phi_{-1} & 0 & \phi_{1} \bar{\phi}_{0} \\
0 & \bar{\phi}_{1} \phi_{0} & 0
\end{array}\right) \\
a_{ \pm 1} & =\mp p+q+\left(\beta_{0}+\beta_{1}\right)\left(\left|\phi_{ \pm 1}\right|^{2}+\left|\phi_{0}\right|^{2}\right)+\left(\beta_{0}-\beta_{1}\right)\left|\phi_{\mp 1}\right|^{2} \\
a_{0} & =\left(\beta_{0}+\beta_{1}\right)\left(\left|\phi_{1}\right|^{2}+\left|\phi_{-1}\right|^{2}\right)+\beta_{0}\left|\phi_{0}\right|^{2} .
\end{aligned}
$$

- Properties when $q=0$
- Ferromagnetic system-spin-dependent interacton $\beta_{1}<0$. Single mode approximation. ϕ_{j} identical up to a constant factor. $\lambda=0$
- Anti-ferromagnetic system-spin-dependent interacton $\beta_{1}>0$ $(q \leq 0) . \phi_{0}=0, \mathbf{B}(\Phi)=0$.

GFDN for spin-1 BEC

- CNGF for spin-1 BEC (W. Bao\& H. Wang, SINUM,2007)

$$
\partial_{t} \Phi(\mathbf{x}, t)=\left[-\mathbf{H}(\Phi)+\mu_{\Phi}(t) \mathbf{l}_{3}+\lambda_{\Phi}(t) \mathbf{f}_{z}\right] \Phi(\mathbf{x}, t)
$$

- mass and magnetization-conservative and energy-diminishing
- Crank-Nicolson scheme. fully nonlinear, expensive
- GFDN for spin-1 BEC (W. Bao\& F. Lim, SISC,2008)

$$
\begin{aligned}
\partial_{t} \Phi(\mathbf{x}, t) & =\left[\frac{1}{2} \nabla^{2}-V(\mathbf{x})-\mathbf{A}(\Phi)-\mathbf{B}(\Phi)\right] \Phi(\mathbf{x}, t) \\
\phi_{l}\left(\mathbf{x}, t_{n+1}\right) & :=\phi_{l}\left(\mathbf{x}, t_{n+1}^{+}\right)=\sigma_{l}^{n} \phi_{l}\left(\mathbf{x}, t_{n+1}^{-}\right), \quad \mathbf{x} \in U
\end{aligned}
$$

- projection constants σ_{l}^{n} determined through

$$
\left\{\begin{array}{l}
\left\|\Phi\left(\cdot, t_{n+1}\right)\right\|^{2}=1 \\
\left\|\phi_{1}\left(\cdot, t_{n+1}\right)\right\|^{2}-\left\|\phi_{-1}\left(\cdot, t_{n+1}\right)\right\|^{2}=M \\
\sigma_{-1}^{n} \sigma_{1}^{n}=\left(\sigma_{0}^{n}\right)^{2}
\end{array}\right.
$$

GFDN with its typical time discretizations

- Step 1: gradient flow part
- Linearized backward Euler scheme (GFDN-BE):

$$
\frac{\Phi^{(1)}-\Phi^{n}}{\tau}=\left[\frac{1}{2} \nabla^{2}-V(\mathbf{x})-\mathbf{A}\left(\Phi^{n}\right)-\mathbf{B}\left(\Phi^{n}\right)\right] \Phi^{(1)}
$$

- Backward-forward Euler scheme (GFDN-BF)

$$
\frac{\Phi^{(1)}-\Phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \Phi^{(1)}-\mathbf{S} \Phi^{(1)}+\left[\mathbf{S}-V(\mathbf{x})-\mathbf{A}\left(\Phi^{n}\right)-\mathbf{B}\left(\Phi^{n}\right)\right] \Phi^{n}
$$

where $\mathbf{S}=\operatorname{diag}\left(\alpha_{1}, \alpha_{0}, \alpha_{-1}\right)$ and $\alpha_{l}=\alpha_{l}\left(\Phi^{n}\right) \geq 0(I=-1,0,1)$ are the stabilization parameters.

- Forward Euler scheme (GFDN-FE):

$$
\frac{\Phi^{(1)}-\Phi^{n}}{\tau}=\left[\frac{1}{2} \nabla^{2}-V(\mathbf{x})-\mathbf{A}\left(\Phi^{n}\right)-\mathbf{B}\left(\Phi^{n}\right)\right] \Phi^{n}
$$

- Step 2: projection step, $\Phi^{n+1}=\mathbf{P} \Phi^{(1)}=\operatorname{diag}\left(\sigma_{-1}^{n}, \sigma_{0}^{n}, \sigma_{1}^{n}\right) \Phi^{(1)}$

Inaccuracy

- When convergence reached $\Phi^{n+1}=\mathbf{P} \phi^{(1)}=\Phi^{n}$ (\mathbf{P} projection diagonal matrix)
- GFDN-BE

$$
\frac{\mathbf{P}-\mathbf{I}_{3}}{\tau} \Phi^{n}=\left[-\frac{1}{2} \nabla^{2}+V(\mathbf{x})+\mathbf{A}\left(\Phi^{n}\right)\right] \Phi^{n}+\mathbf{P B}\left(\Phi^{n}\right) \mathbf{P}^{-1} \Phi^{n}
$$

- GFDN-BF

$$
\left(\frac{\mathbf{I}_{3}}{\tau}+\mathbf{S}\right)\left(\mathbf{P}-\mathbf{I}_{3}\right) \Phi^{n}=-\frac{1}{2} \nabla^{2} \Phi^{n}+\mathbf{P}\left[V(\mathbf{x})+\mathbf{A}\left(\Phi^{n}\right)+\mathbf{B}\left(\Phi^{n}\right)\right] \Phi^{n}
$$

- GFDN-FE

$$
\frac{\mathbf{I}_{3}-\mathbf{P}^{-1}}{\tau} \Phi^{n}=\left[-\frac{1}{2} \nabla^{2}+V(\mathbf{x})+\mathbf{A}\left(\Phi^{n}\right)+\mathbf{B}\left(\Phi^{n}\right)\right] \Phi^{n}
$$

- In general, the above limit equation is not the exact Euler-Lagrange equation

$$
\left(\mu \mathbf{l}_{3}+\lambda \mathbf{f}_{z}\right) \Phi=\left[-\frac{1}{2} \nabla^{2}+V(\mathbf{x})+\mathbf{A}(\Phi)+\mathbf{B}(\Phi)\right] \Phi=: \mathbf{H}(\Phi) \Phi
$$

GFLM for spin-1 BEC

- GFLM for spin-1 BEC

$$
\begin{aligned}
\partial_{t} \Phi(\mathbf{x}, t) & =\left[\frac{1}{2} \nabla^{2}-V(\mathbf{x})-\mathbf{A}(\Phi)-\mathbf{B}(\Phi)\right] \Phi(\mathbf{x}, t)+\left[\mu_{\Phi}\left(t_{n}\right)+\lambda_{\Phi}\left(t_{n}\right) \mathbf{f}_{z}\right] \Phi\left(\mathbf{x}, t_{n}\right), \\
\phi_{l}\left(\mathbf{x}, t_{n+1}\right) & :=\phi_{l}\left(\mathbf{x}, t_{n+1}^{+}\right)=\sigma_{l}^{n} \phi_{l}\left(\mathbf{x}, t_{n+1}^{-}\right), \quad \mathbf{x} \in U
\end{aligned}
$$

- Backward-forward Euler discretization (GFLM-BF)

$$
\begin{aligned}
& \frac{\Phi^{(1)}-\Phi^{n}}{\tau}=\frac{1}{2} \nabla^{2} \Phi^{(1)}-\mathbf{S} \Phi^{(1)}+\left[\mathbf{S}-V(\mathbf{x})-\mathbf{A}\left(\Phi^{n}\right)-\mathbf{B}\left(\Phi^{n}\right)\right] \Phi^{n}+\left[\mu^{n}+\lambda^{n} \mathbf{f}_{z}\right] \Phi^{n}, \\
& \Phi^{n+1}=\mathbf{P} \Phi^{(1)}=\operatorname{diag}\left(\sigma_{-1}^{n}, \sigma_{0}^{n}, \sigma_{1}^{n}\right) \Phi^{(1)}
\end{aligned}
$$

\mathbf{S} is for the stabilization purpose

- Accurate: when convergence is reached, $\mathbf{P}=I d$, above equation becomes the exact Euler-Lagrange equation
- Efficient: only constant coefficient Poisson equations need to be solved at each step
- GFLM's flexible discretization
- GFLM-BE

$$
\frac{\Phi^{(1)}-\Phi^{n}}{\tau}=\left[\frac{1}{2} \nabla^{2}-V(\mathbf{x})-\mathbf{A}\left(\Phi^{n}\right)-\mathbf{B}\left(\Phi^{n}\right)\right] \Phi^{(1)}+\left[\mu^{n}+\lambda^{n} \mathbf{f}_{z}\right] \Phi^{n}
$$

- GFLM-FE

$$
\frac{\Phi^{(1)}-\Phi^{n}}{\tau}=\left[\frac{1}{2} \nabla^{2}-V(\mathbf{x})-\mathbf{A}\left(\Phi^{n}\right)-\mathbf{B}\left(\Phi^{n}\right)\right] \Phi^{n}+\left[\mu^{n}+\lambda^{n} \mathbf{f}_{z}\right] \Phi^{n}
$$

Numerical results for the ground state solution of spin-1 BECs, $\varepsilon=10^{-12}$

Method	τ	$\mathrm{CPU}(\mathrm{s})$	E_{g}	μ_{g}	λ_{g}	maxres
	1	8.53	47.9661225305	73.0968247398	0.4053541552	$2.70 \mathrm{E}-04$
	0.5	9.04	47.9661225189	73.0968248503	0.4053527218	$2.67 \mathrm{E}-04$
GFDN-BE	0.1	10.91	47.9661224401	73.0968256549	0.4053424675	$2.41 \mathrm{E}-04$
	0.05	11.96	47.9661223687	73.0968264954	0.4053320769	$2.15 \mathrm{E}-04$
	0.01	18.40	47.9661221687	73.0968299967	0.4052916924	$1.16 \mathrm{E}-04$
	0.1	-	-	-	-	-
GFDN-BF	0.05	-	-	-	-	
	0.01	1.80	47.9679530099	73.0993001953	0.3906034138	$3.66 \mathrm{E}-02$
	0.005	2.73	47.9667921869	73.0972645008	0.3978244955	$2.20 \mathrm{E}-02$
	0.001	9.75	47.9661608635	73.0966857217	0.4038630375	$5.14 \mathrm{E}-03$
	0.001	6.57	47.9661220869	73.0968343831	0.4052457548	$4.15 \mathrm{E}-06$
GFDN-FE	0.0005	13.23	47.9661220868	73.0968345082	0.4052447036	$1.99 \mathrm{E}-06$
	0.00025	26.89	47.9661220868	73.0968345674	0.4052442073	$9.79 \mathrm{E}-07$
	0.0001	68.29	47.9661220868	73.0968346019	0.4052439184	$3.87 \mathrm{E}-07$
	1	4.23	47.9661220868	73.0968346245	0.4052437292	$7.61 \mathrm{E}-11$
GFLM-BE	0.5	4.56	47.9661220868	73.0968346245	0.4052437292	$3.85 \mathrm{E}-11$
	0.1	5.57	47.9661220868	73.0968346244	0.4052437292	$8.50 \mathrm{E}-12$
	0.05	6.31	47.9661220868	73.0968346244	0.4052437292	$4.73 \mathrm{E}-12$
	0.01	10.37	47.9661220868	73.0968346244	0.4052437292	$1.74 \mathrm{E}-12$
	10	1.01	47.9661220868	73.0968346247	0.4052437289	$1.02 \mathrm{E}-09$
	0.1	1.44	47.9661220868	73.0968346244	0.4052437292	$1.12 \mathrm{E}-11$
GFLM-BF	0.05	1.60	47.9661220868	73.0968346244	0.4052437292	$6.10 \mathrm{E}-12$
	0.01	2.94	47.9661220868	73.0968346244	0.4052437292	$2.02 \mathrm{E}-12$
	0.005	4.66	47.9661220868	73.0968346244	0.4052437292	$1.53 \mathrm{E}-12$
	0.001	16.42	47.9661220868	73.0968346244	0.4052437292	$1.12 \mathrm{E}-12$
	0.001	8.06	47.9661220868	73.0968346244	0.4052437292	$1.02 \mathrm{E}-12$
GFLM-FE	0.0005	16.07	47.9661220868	73.0968346244	0.4052437292	$1.02 \mathrm{E}-12$
	0.00025	32.16	47.9661220868	73.0968346244	0.4052437292	$1.02 \mathrm{E}-12$
	0.0001	80.94	47.9661220868	73.0968346244	0.4052437292	$1.04 \mathrm{E}-12$

Numerical results $\varepsilon=10^{-12}$
special case

Method	τ	$\mathrm{CPU}(\mathrm{s})$	E_{g}	μ_{g}	λ_{g}	maxres
	1	14.15	47.6941680392	73.0222344821	0.0000000000	$7.59 \mathrm{E}-11$
	0.5	15.25	47.6941680392	73.0222344822	0.0000000000	$3.83 \mathrm{E}-11$
GFDN-BE	0.1	18.90	47.6941680392	73.0222344822	0.0000000000	$8.35 \mathrm{E}-12$
	0.05	21.55	47.6941680392	73.0222344822	0.0000000000	$4.68 \mathrm{E}-12$
	0.01	34.46	47.6941680392	73.0222344822	0.0000000000	$1.74 \mathrm{E}-12$
	0.1	-	-	-	-	-
GFDN-BF	0.05	-	-	-	-	
	0.01	4.63	47.6947582927	73.0183492805	0.0000000486	$2.97 \mathrm{E}-02$
	0.005	6.64	47.6944023361	73.0198936132	-0.0000000139	$1.85 \mathrm{E}-02$
	0.001	21.49	47.6941829926	73.0217164749	-0.0000000023	$4.64 \mathrm{E}-03$
	0.001	12.11	47.6941680392	73.0222344822	0.0000000000	$9.52 \mathrm{E}-13$
GFDN-FE	0.0005	24.81	47.6941680392	73.0222344822	0.0000000000	$9.96 \mathrm{E}-13$
	0.00025	54.89	47.6941680392	73.0222344822	0.0000000000	$1.03 \mathrm{E}-12$
	0.0001	138.84	47.6941680392	73.0222344822	0.0000000000	$1.03 \mathrm{E}-12$
	1	6.45	47.6941680392	73.0222344822	0.0000000000	$7.57 \mathrm{E}-11$
	0.5	7.12	47.6941680392	73.0222344822	0.0000000000	$3.83 \mathrm{E}-11$
GFLM-BE	0.1	8.38	47.6941680392	73.0222344822	0.0000000000	$8.45 \mathrm{E}-12$
	0.05	9.58	47.6941680392	73.0222344822	0.0000000000	$4.72 \mathrm{E}-12$
	0.01	16.26	47.6941680392	73.0222344822	0.0000000000	$1.75 \mathrm{E}-12$
	10	1.93	47.6941680392	73.0222344822	0.0000000000	$9.98 \mathrm{E}-10$
	0.1	2.95	47.6941680392	73.0222344822	0.0000000000	$1.10 \mathrm{E}-11$
GFLM-BF	0.05	3.38	47.6941680392	73.0222344822	0.0000000000	$5.98 \mathrm{E}-12$
	0.01	5.43	47.6941680392	73.0222344822	0.0000000000	$2.01 \mathrm{E}-12$
	0.005	7.98	47.6941680392	73.0222344822	0.0000000000	$1.53 \mathrm{E}-12$
	0.001	30.67	47.6941680392	73.0222344822	0.0000000000	$1.20 \mathrm{E}-12$
	0.001	14.56	47.6941680392	73.0222344822	0.0000000000	$1.02 \mathrm{E}-12$
GFLM-FE	0.0005	29.65	47.6941680392	73.0222344822	0.0000000000	$1.04 \mathrm{E}-12$
	0.00025	59.85	47.6941680392	73.0222344822	0.0000000000	$1.08 \mathrm{E}-12$
	0.0001	151.51	47.6941680392	73.0222344822	0.0000000000	$1.00 \mathrm{E}-12$

Extensions to higher spin case

- Extension to general spin-F BEC ground state problem
- NGF approach:
- Key: gradient flow part+ projection to the constrained manifold S_{M}
- GFLM allows gradient flow part flexible
- projection!

Different projection strategies: spin 2

- view projection as the split-step for $\partial_{t} \phi_{I}=(\mu+I \lambda) \phi_{I}(I=-2, \ldots, 2)$
- $\alpha_{l}=e^{\Delta t(\mu+\mid \lambda)}=c_{0} c_{1}^{\prime}$ (two unknowns c_{0}, c_{1})

$$
\begin{aligned}
& c_{0}^{2}\left(c_{1}^{4}\left\|\phi_{2}^{(1)}\right\|^{2}+c_{1}^{2}\left\|\phi_{1}^{(1)}\right\|^{2}+\left\|\phi_{0}^{(1)}\right\|^{2}+c_{1}^{-2}\left\|\phi_{-1}^{(1)}\right\|^{2}+c_{1}^{-4}\left\|\phi_{-2}^{(1)}\right\|^{2}\right)=1, \\
& c_{0}^{2}\left(2 c_{1}^{4}\left\|\phi_{2}^{(1)}\right\|^{2}+c_{1}^{2}\left\|\phi_{1}^{(1)}\right\|^{2}-c_{1}^{-2}\left\|\phi_{-1}^{(1)}\right\|^{2}-2 c_{1}^{-4}\left\|\phi_{-2}^{(1)}\right\|^{2}\right)=M .
\end{aligned}
$$

A quartic equation to be solved, positive root

- $\alpha_{I}=e^{\Delta t(\mu+I \lambda)} \approx(1+\Delta \mu+I \lambda)=c_{0}\left(1+/ c_{1}\right)$

$$
\begin{aligned}
& \left(1+2 c_{1}\right)^{2}\left\|\phi_{2}^{(1)}\right\|^{2}+\left(1+c_{1}\right)^{2}\left\|\phi_{1}^{(1)}\right\|^{2}+\left\|\phi_{0}^{(1)}\right\|^{2}+\left(1-c_{1}\right)^{2}\left\|\phi_{-1}^{(1)}\right\|^{2}+\left(1-2 c_{1}\right)^{2}\left\|\phi_{-2}^{(1)}\right\|^{2}=\frac{1}{c_{0}^{2}} \\
& 2\left(1+2 c_{1}\right)^{2}\left\|\phi_{2}^{(1)}\right\|^{2}+\left(1+c_{1}\right)^{2}\left\|\phi_{1}^{(1)}\right\|^{2}-\left(1-c_{1}\right)^{2}\left\|\phi_{-1}^{(1)}\right\|^{2}-2\left(1-2 c_{1}\right)^{2}\left\|\phi_{-2}^{(1)}\right\|^{2}=\frac{M}{c_{0}^{2}}
\end{aligned}
$$

A quadratic equation to be solved, positive root not guaranteed

- $\alpha_{I}=1 / e^{-\Delta t(\mu+I \lambda)} \approx 1 /(1-\Delta \mu-I \lambda)=1 /\left(c_{0}\left(1+/ c_{1}\right)\right)$
$\left(1+2 c_{1}\right)^{-2}\left\|\phi_{2}^{(1)}\right\|^{2}+\left(1+c_{1}\right)^{-2}\left\|\phi_{1}^{(1)}\right\|^{2}+\left\|\phi_{0}^{(1)}\right\|^{2}+\left(1-c_{1}\right)^{-2}\left\|\phi_{-1}^{(1)}\right\|^{2}+\left(1-2 c_{1}\right)^{-2}\left\|\phi_{-2}^{(1)}\right\|^{2}=c_{0}^{2}$
$2\left(1+2 c_{1}\right)^{-2}\left\|\phi_{2}^{(1)}\right\|^{2}+\left(1+c_{1}\right)^{-2}\left\|\phi_{1}^{(1)}\right\|^{2}-\left(1-c_{1}\right)^{-2}\left\|\phi_{-1}^{(1)}\right\|^{2}-2\left(1-2 c_{1}\right)^{-2}\left\|\phi_{-2}^{(1)}\right\|^{-2}=M c_{0}^{2}$

An octic equation to be solved, positive root (guaranteed)

Inexact projection

- Spin- $F(F=1,2,3, \ldots)$ BEC,

$$
\Phi:=\Phi(\mathbf{x})=\left(\phi_{F}(\mathbf{x}), \phi_{F-1}(\mathbf{x}), \ldots, \phi_{-F}(\mathbf{x})\right)^{T} \in \mathbb{C}^{2 F+1}
$$

- Energy

$$
E(\Phi)=\int_{\mathcal{D}}\left\{\sum_{l=-F}^{F}\left(\frac{1}{2}\left|\nabla \phi_{l}\right|^{2}+\left(V(\mathbf{x})-p l+\left.q\right|^{2}\right)\left|\phi_{l}\right|^{2}\right)+\frac{\beta_{0}}{2} \rho^{2}\right\} \mathrm{d} \mathbf{x}+E_{s}(\Phi)
$$

- Constraints: mass (or normalization) $\mathcal{N}(\Phi):=\|\Phi\|^{2}:=\sum_{l=-F}^{F}\left\|\phi_{l}\right\|^{2}=1$ magnetization (with $M \in[-F, F]) \mathcal{M}(\Phi):=\sum_{l=-F}^{F}\left\|\phi_{l}\right\|^{2}=M$
- Ground state Φ_{g} :

$$
E_{g}:=E\left(\Phi_{g}\right)=\min _{\Phi \in S_{M}} E(\Phi)
$$

$S_{M}=\left\{\Phi \in \mathbb{C}^{2 F+1} \mid \mathcal{N}(\Phi)=1, \mathcal{M}(\Phi)=M, E(\Phi)<\infty\right\}$.

Gradient flow method for ground states

- based on continuous flow $\partial_{t} \phi_{l}(\mathbf{x}, t)=-H_{l}(\Phi)+\left(\mu_{\Phi^{n}}+I \lambda_{\Phi^{n}}\right) \phi_{l}$

$$
(I=F, \ldots,-F)
$$

- Step 1. Gradient flow part

$$
\frac{\phi_{l}^{\star}-\phi_{l}^{n}}{\tau}=\left(\frac{1}{2} \Delta \phi_{l}^{\star}-\left[V(\mathbf{x})-p l+q I^{2}+\beta_{0} \rho^{n}\right] \phi_{l}^{n}-g_{l}\left(\Phi^{n}\right)\right)+\left(\mu_{\Phi^{n}}+I \lambda_{\Phi^{n}}\right) \phi_{1}^{n}
$$

- Step 2. Projection part

$$
\begin{gathered}
\Phi^{n+1}:=\operatorname{diag}\left(\sigma_{F}^{n}, \sigma_{F-1}^{n}, \ldots, \sigma_{-F}^{n}\right) \Phi^{\star} \\
\mathcal{N}\left(\Phi^{n+1}\right)=1, \quad \mathcal{M}\left(\Phi^{n+1}\right)=M
\end{gathered}
$$

- Step 2 usually is done exactly, how about inexact?

Inexact projection: type I

- The projection constants for GFLM: $\sigma_{I}^{n}=\mathrm{e}^{c_{0}+l c_{1}} .(I=F, \ldots,-F)$, $c_{0}, c_{1}=O\left(\tau^{2}\right)$. From Taylor expansion,

$$
\left(\sigma_{1}^{n}\right)^{2}=\mathrm{e}^{2 c_{0}+2 / c_{1}}=1+2 c_{0}+2 / c_{1}+O\left(c_{0}^{2}+c_{1}^{2}\right) .
$$

neglecting the high-order terms, we derive a linear system for $\left(c_{0}, c_{1}\right)$:

$$
\sum_{l=-F}^{F}\left\|\phi_{l}^{\star}\right\|^{2}\left(1+2 c_{0}+2 / c_{1}\right)=1, \quad \sum_{l=-F}^{F} I\left\|\phi_{l}^{\star}\right\|^{2}\left(1+2 c_{0}+2 / c_{1}\right)=M
$$

solvable and explicit solutions!

- Denote $\left\{m_{0}, m_{1}, m_{2}\right\}=\sum_{l=-F}^{F}\left\{1, I, I^{2}\right\}\left\|\phi_{l}^{\star}\right\|^{2}$,

$$
c_{0}=\frac{m_{2}-M m_{1}}{2\left(m_{0} m_{2}-m_{1}^{2}\right)}-\frac{1}{2}, \quad c_{1}=\frac{M m_{0}-m_{1}}{2\left(m_{0} m_{2}-m_{1}^{2}\right)}
$$

the projection constants:

$$
\sigma_{I}^{n}=\mathrm{e}^{c_{0}+l c_{1}}=\exp \left[\frac{m_{2}-M m_{1}+I\left(M m_{0}-m_{1}\right)}{2\left(m_{0} m_{2}-m_{1}^{2}\right)}-\frac{1}{2}\right], \quad I=F, \ldots,-F
$$

Inexact projection: type 1

Proposition

Assume that Φ^{\star} is bounded and satisfies $m_{0} m_{2}-m_{1}^{2} \geq \delta_{0}>0$ for some constant $\delta_{0}>0$, and Φ^{n+1} is defined iwith $\sigma_{I}^{n}(I=F, \ldots,-F)$. Then

$$
\left|\mathcal{N}\left(\Phi^{n+1}\right)-1\right|+\left|\mathcal{M}\left(\Phi^{n+1}\right)-M\right|+\left\|\Phi^{n+1}-\Phi^{\star}\right\|^{2}=O\left(\left|\mathcal{N}\left(\Phi^{\star}\right)-1\right|^{2}+\left|\mathcal{M}\left(\Phi^{\star}\right)-M\right|^{2}\right)
$$

- partially explain why it would work
- constraints are not satisfied exactly

Inexact projection: type 2

- look for the projection constants as $\sigma_{I}^{n}=c(1+I \alpha)(I=F, \ldots,-F)$ with $c>0 \alpha \in \mathbb{R}$. From $\mathcal{N}\left(\Phi^{n+1}\right)=1$, we have $c=1 / \sqrt{m_{0}+2 m_{1} \alpha+m_{2} \alpha^{2}}$

$$
\sigma_{l}^{n}=\frac{1+l \alpha}{\sqrt{m_{0}+2 m_{1} \alpha+m_{2} \alpha^{2}}}, \quad I=F, \ldots,-F
$$

by Taylor expansion, for magnetization constraint

$$
\left(\sigma_{l}^{n}\right)^{2}=\frac{1+2 l \alpha+I^{2} \alpha^{2}}{m_{0}+2 m_{1} \alpha+m_{2} \alpha^{2}}=\frac{1}{m_{0}}+\frac{2\left(m_{0} l-m_{1}\right)}{m_{0}^{2}} \alpha+O\left(\alpha^{2}\right), \quad I=F, \ldots,-F
$$

neglecting the high-order terms, we obtain a linear equation for α :

$$
\frac{m_{1}}{m_{0}}+\frac{2\left(m_{0} m_{2}-m_{1}^{2}\right)}{m_{0}^{2}} \alpha=M, \quad \alpha=\frac{m_{0}\left(M m_{0}-m_{1}\right)}{2\left(m_{0} m_{2}-m_{1}^{2}\right)}
$$

- Mass constraint exact. Projection coefficients may not be positive

Inexact projection: type II

Proposition

Assume that Φ^{\star} is bounded and satisfies $m_{0} m_{2}-m_{1}^{2} \geq \delta_{0}>0$ for some constant $\delta_{0}>0$, and Φ^{n+1} is defined with $\sigma_{I}^{n}(I=F, \ldots,-F)$ of type II. Then, $\mathcal{N}\left(\Phi^{n+1}\right)=1$ and

$$
\left|\mathcal{M}\left(\Phi^{n+1}\right)-M\right|+\left\|\Phi^{n+1}-\Phi^{\star}\right\|^{2}=O\left(\left|\mathcal{N}\left(\Phi^{\star}\right)-1\right|^{2}+\left|\mathcal{M}\left(\Phi^{\star}\right)-M\right|^{2}\right) .
$$

Numerical examples

Figure 1: The densities of the ground states, i.e., $\left|\phi_{l}\right|^{2}(l=0, \pm 1)$, for ferromagnetic spin-1 BECs in Case I in Problem 1 with $M=0.3$ and different q or $V(x)$. Left: $q=0.5$ and $V(x) \equiv 0$; Middle: $q=0.5$ and $V(x)=\frac{1}{2} x^{2}$; Right: $q=-0.1$ and $V(x)=\frac{1}{2} x^{2}$.

Figure 4: The evolution of the relative energy $E^{n}-E_{g}$ by the GFLM-P1 (blue solid line) and GFLM-P2 (red dashed line) for computing the ground state of spin- $F(F=1,2,3)$ BECs with $M=0.3$ and $q=0.5$ in Example 4.1, where E_{g} is the corresponding ground state energy computed with a very small spatial mesh size $h=\frac{1}{128}$. Left: spin-1 (Case I in Problem 1, $E_{g}=47.9442044471707$); Middle: spin-2 (Case I in Problem 2, $E_{g}=12.0047184614585$); Right: spin-3 (Case I in Problem 3, $E_{g}=18.1151110322132$).

Table 1: Numerical results of a 1D spin-1 BEC with $q=0.5$ in Case I in Problem 1.

M	proj	E_{g}	μ_{g}	λ_{g}	e_{r}^{n}	e_{N}^{n}	e_{M}^{n}	iter	time
0	Pe	47.8638	72.5842	0.0000	$9.99 \mathrm{E}-13$	2.22E-16	<1.0E-16	49065	5.86
	P1	47.8638	72.5842	0.0000	9.98E-13	<1.0E-16	<1.0E-16	49062	5.84
	P2	47.8638	72.5842	0.0000	$9.99 \mathrm{E}-13$	2.22E-16	<1.0E-16	49057	5.87
0.2	P	47	72.529	0.3128	$9.98 \mathrm{E}-13$	$2.22 \mathrm{E}-1$	<1.0E-10	5972	1.86
	P1	47.	72.	0.3	9.95E-13	2.22	<1.0E-16	1597	1.90
	P2	47.9108	72.5291	0.3128	$9.99 \mathrm{E}-13$	2.22E-16	<1.0E-16	15968	1.90
0.5	Pe	48	72.4739	0.4084	$9.99 \mathrm{E}-13$	<1.0E-16	1.11E-16	17193	2.
	P1	48.0206	72.4739	0.4084	$9.90 \mathrm{E}-13$	1.11E-16	1.11E-16	17198	2.06
	P2	48.0206	72.4739	0.4084	$9.99 \mathrm{E}-13$	1.11E-16	1.11E-16	17183	2.05
0.9	Pe	48.200	72.4106	0.4843	9.95E-13	1.11E-16	1.11E-16	28821	3.36
	P1	48.2001	72.4106	0.4843	$9.97 \mathrm{E}-13$	3.33E-16	3.33E-16	28829	3.45
	P2	48.2001	72.4106	0.4843	9.92E-13	2.22E-16	3.33E-16	28829	3.44

Table 2: Numerical results of a 1D spin-2 BEC with $q=0.5$ in Case I in Problem 2.

M	proj	E_{g}	μ_{g}	λ_{g}	e_{r}^{n}	e_{N}^{n}	e_{M}^{n}	iter	time
0	Pe	11.9701	15.6868	0.0000	$9.95 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$5.69 \mathrm{E}-16$	618	0.22
	P1	11.9701	15.6868	0.0000	$9.93 \mathrm{E}-13$	$<1.0 \mathrm{E}-16$	$1.11 \mathrm{E}-16$	618	0.19
	P 2	11.9701	15.6868	0.0000	$9.59 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$<1.0 \mathrm{E}-16$	619	0.18
	Pe	12.0662	15.5896	0.3839	$9.85 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$5.00 \mathrm{E}-16$	1709	0.53
	P 1	12.0662	15.5896	0.3839	$9.77 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$<1.0 \mathrm{E}-16$	1709	0.47
	P 2	12.0662	15.5896	0.3839	$9.61 \mathrm{E}-13$	$<1.0 \mathrm{E}-16$	$1.67 \mathrm{E}-16$	1709	0.48
1.5	Pe	12.8294	14.8301	1.1377	$9.81 \mathrm{E}-13$	$4.44 \mathrm{E}-16$	$6.66 \mathrm{E}-16$	3315	1.01
	P1	12.8294	14.8301	1.1377	$9.99 \mathrm{E}-13$	$1.78 \mathrm{E}-15$	$2.44 \mathrm{E}-15$	3311	0.91
	P 2	12.8294	14.8301	1.1377	$9.88 \mathrm{E}-13$	$6.66 \mathrm{E}-16$	$8.88 \mathrm{E}-16$	3311	0.90
	Pe	13.3429	14.3336	1.4286	$9.90 \mathrm{E}-13$	$<1.0 \mathrm{E}-16$	$<1.0 \mathrm{E}-16$	7381	2.22
1.9	P 1	13.3429	14.3336	1.4286	$9.89 \mathrm{E}-13$	$2.44 \mathrm{E}-15$	$4.88 \mathrm{E}-15$	7386	2.02
	P 2	13.3429	14.3336	1.4286	$9.96 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$4.44 \mathrm{E}-16$	7398	2.02

Table 3: Numerical results of a 1D spin-3 BEC with $q=0.5$ in Case I in Problem 3.

M	proj	E_{g}	μ_{g}	λ_{g}	e_{r}^{n}	e_{N}^{n}	e_{M}^{n}	iter	time
0	Pe	17.8889	24.9166	0.0000	$9.25 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$<1.0 \mathrm{E}-16$	447	0.17
	P 1	17.8889	24.9166	0.0000	$9.37 \mathrm{E}-13$	$1.11 \mathrm{E}-16$	$<1.0 \mathrm{E}-16$	447	0.12
	P 2	17.8889	24.9166	0.0000	$9.54 \mathrm{E}-13$	$6.66 \mathrm{E}-16$	$<1.0 \mathrm{E}-16$	447	0.13
0.5	Pe	18.2688	25.0240	0.6561	$9.95 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$3.89 \mathrm{E}-16$	19075	5.90
	P 1	18.2688	25.0240	0.6561	$9.97 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$1.11 \mathrm{E}-16$	19322	5.11
	P 2	18.2688	25.0240	0.6561	$9.93 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$2.22 \mathrm{E}-16$	19032	5.00
1.5	Pe	19.4597	24.0336	1.7243	$9.97 \mathrm{E}-13$	$4.44 \mathrm{E}-16$	$4.44 \mathrm{E}-16$	23084	7.11
	P 1	19.4597	24.0336	1.7243	$9.72 \mathrm{E}-13$	$<1.0 \mathrm{E}-16$	$4.44 \mathrm{E}-16$	23328	6.41
	P 2	19.4597	24.0336	1.7243	$9.91 \mathrm{E}-13$	$4.44 \mathrm{E}-16$	$6.66 \mathrm{E}-16$	23081	6.06
	Pe	21.7284	21.6582	2.9301	$9.81 \mathrm{E}-13$	$2.22 \mathrm{E}-16$	$4.44 \mathrm{E}-16$	4643	1.51
2.5	P 1	21.7284	21.6582	2.9301	$9.82 \mathrm{E}-13$	$6.66 \mathrm{E}-16$	$8.88 \mathrm{E}-16$	4644	1.25
	P 2	21.7284	21.6582	2.9301	$9.90 \mathrm{E}-13$	$<1.0 \mathrm{E}-16$	$4.44 \mathrm{E}-16$	4637	1.23

Conclusion

- NGF method for computing the ground states of BECs
- GFDN requires special discretization to avoid error in τ
- GFLM more flexible and works for spinor cases

Reference

- W. Bao and Y. Cai, Mathematical models and numerical methods for spinor Bose-Einstein condensates, Commu. Comput. Phys., Vol. 24, No. 4, pp. 899-965, 2018
- Y. Cai and W. Liu, Efficient and accurate gradient flow methods for computing ground states of spinor Bose-Einstein condensates, J. Comput. Phys. 433, No. 110183, 2021
- W. Liu and Y. Cai, Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates, SIAM Journal on Scientific Computing, 43 (1), B219-B242, 2021

THANK YOU!

