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The talk is about this paper:

Coupling Navier-Stokes and Gross-Pitaevskii equations for the )
numerical simulation of two-fluid quantum flows e
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Why try to couple incompressible Navier-Stokes
with a Gross-Pitaevskii superfluid?

The talk will start with a general introduction:

Introduction: Burgers; Euler (compressible and inc.); Gross-Pitaevskii Equation
(GPE=Nonlinear Schrdodinger) Madelung’s transformation. Example: Quantum
shocks in (linear) Schrodinger Equation.

Some orders of magnitude.

Physical motivations



Then | will present:

 Building up the model

* The uncoupled GP and NS equations

* The regularized superfluid velocity field

* Determination of the slip velocity field and volume friction force
 Definition of coupling terms in the GP equation

* Numerical coupling algorithm

* Numerical results

e 2D superfluid vortex dipole: determination of model coefficients
by comparing one-way GP-NS coupling to analytical solutions

» Results for two-way GP-NS coupling for the vortex dipole
* Results for 3D superfluid vortex rings and reconnection

e Conclusion



Introduction. Hydrodynamic
Systems

e Perfect fluids
e Superfluids

e Simple examples using Burgers equation



What is a perfect fluid?

e Real classical fluids are viscous and conduct heat

e Perfect fluids are idealized models in which these
mechanisms are neglected

e Perfect fluids have zero shear stresses, viscosities, and
heat conduction

e (Good approximation in some physical cases



Euler Equations

* A perfect fluid can be completely characterized by its
velocity and two independent thermodynamic variables.

* |f only one thermodynamic variable exists (e.g. isentropic
perfect fluid) the fluid is barotropic.

* The density of a barotropic fluid is a function of pressure
only.



Barotropic Euler equations

1
675V‘|_V'VV: ——Vp

Barotropic: p(x,t) = f(p(x,1))

Acoustic propagation: c= 1] =-

Note that the system is time-reversible:

t— —t;V—>—=V;0—>0;p—>DpP



Two useful limits

|.incompressible: p = cte
Vv =0

C — OO

There is no equation of state and p is determined by
maintaining the incompressibility

2. irrotational: V X v —
[ Op
C= 4| =—
v =Vo¢ Op

Only compressible modes...



Variational approach

 For the general case see e.g. : R. L. Seliger and G. B.
Whitham, Variational Principles in Continuum Mechanics,
Proc. R. Soc. Lond. A. 1968 305 1-25.

 Here I'll show how to deal only with the compressible
irrotational case..



Irrotational case

p(Vo)?
L = ppr - (2)19@)
0L
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taking the gradient of the last equation:
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vi+v-Vv=-Vg =



What is a superfluid?
Is it just an Eulerian perfect fluid?

No! Superfluids obey the Gross-Pitaevskii equation
(GPE)

The quantum nature of the GPE does disturb
some classical traditions of fluid mechanics. This
often makes it unpopular...



The Gross-PitaevesKi
Equation (GPE)

Describes a superfluid Bose-Einstein condensate at zero
temperature

Applies to a complex field
Madelung’s transformation gives hydrodynamical form

Contains quantum vortices with quantized velocity
circulation h/m



Variatitional formulation of
the GPE
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U= ./p/mexpiT®

L = pd? A pVe®® | gp® | IP(Vyp)’

2 " 2m2 ! 2m?

Contrast and compare with Euler Equation Lagrangian:




GPE and Madelung
ihd, ¥ = — V20 + g| 0|20
o) = ) L e (M), v=V b

T

Speed of sound c = +/g|Ag|?/m
Coherence length & = \/h2/2m|A|%g.

2 AVp

p 1 2 _ 201 _ 22
at+V (pV ¢)=0, P (V¢) =c“(1-p)+c¢ o

Continuity and Bernoulli equations for a compressible fluid

Irrotational fluid, except near nodal lines of ¢ = superfluid vortices, with
quantum of circulation I" = 4ntc§/ v/2, which can naturally reconnect in this
model.



Energies

The GPE conserves the total energy E, which can
be decomposed as (24, 25]: E = FEyn + Ein + Eq,
with Ewn = {|\/pv[?/2), Einx = (c*(p — 1)?/2) and
E, = (c*€%|V/p|?}. The kinetic energy Eyin can be also
decomposed into compressible EY. and incompressible
E}. components, using (\/pv) = (\/pv)° + ({/pv)' with
V- (ypv) =0.

® See e.g. Nore, et al., Phys. Rev. Lett. 78, 3896, 1997

® Parsesval’s theorem yields definition of energy spectra



1D Burgers equation,GPE and
Madelung’s transformation

* Euler, irrotational case with zero pressure is called inviscid
Burgers

* In this case, the GPE reduces to the (linear) Schrodinger
equation

* Madelung transforms yields inviscid Burgers with an extra
quantum pressure term

* In what immediately follows, we will compare the (slightly)
viscous 1D Burgers case with the quantum case



Viscous Burgers

1 2
0L + 5(0:%5) = VOypz® Pseudospectral calculation
v = 0.006136
#(t =0) = —cosz % dealiasing 1024 grid points
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Quantum shocks in (linear)
GPE

Schrodinger equation: 04 = — 50,1

1/2 ¢

€

Madelung’s transformation: ¥ = p
Equations of motion:

O+ 3(0:9)% = “30F

Orp + 0 (p0zp) = 0

Initial data

¢(t =0) = —cosx
p(t=0) =1

U — 5)x(/b

e = 0.0117188

exp 7




Single QFD shock

Density Velocity
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Single QFD shock

The Green function for Schrodinger’s equation 109 = —50,,1 reads
Gol(, t|zo, to) ! e
x,t|xg, tg) = , e 2<(t—to
’ 070 2tmm(t — to)

The shock solution thus reads

(y_ cos
.8 / o)) R

227T6

In the ¢ — 0 limit, this integral can be computed by using Pearcey’s integral
defined by

Ip(T, X) = / dy e (Xy+Ty*+v°)

— OO

Asymptotic expressions can be readily obtained

see refs. in https://arxiv.org/abs/1709.10417



https://arxiv.org/abs/1709.10417
https://arxiv.org/abs/1709.10417

Some orders of magnitude

See e.g. Galantucci, Baggaley, Barenghi, Krstulovic, Eur. Phys. J. Plus (2020) 135:547
for a detailed discussion of the orders of magnitude

Here | only want to mention:

* Helium phase diagram
 Landau’s 2-fluid model

 Characteristic length: system size, inter vortex distance,
coherence length, excitations mean free path

* characteristic speeds: first and second sound speed

* Viscosity



Existing models

« HBVK

3D Vortex Line/Navier-Stokes coupled simulations
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Models?

Can a GP-NS model be quantitatively applied to describe two-fluid
helium quantum flows?

First, in order to correctly describe superfluid liquid helium, we

need a correct equation of state and a dispersion relation also

involving rotons excitations. This implies that the GP equation

needs to be extended by including non-local and higher order
nonlinear terms.

Second, the NS description itself for the normal fluid will be valid
only for scales of the order, or smaller than the thermal excitation
mean free path.

A quantitative self-consistent description of the two-fluid helium
flow for all range of temperatures is still an open problem.



Physical motivations

® Recent experimental results have produced visualizations of the motion
of the normal fluid in systems where it is coupled to the superfluid
vortices by mutual friction

® Producing and imaging a thin line of He2x molecular tracers in helium-4, J.

Gao, A. Marakov,WV. Guo, B.T. Pawlowski, S.W.Van Sciver, G. G. lhas, D. N.
McKinsey, and W. EVinen, Review of Scientific Instruments 86, 093904

(2015)

Heat flux: 180 mW/cm” [l Heat ﬂux- 200 mW/Cm2
u(R)

: —‘_}—-#“ —#.*
’ " ~"rd A o. « ' & v

Heat flux: 20 mW/cm ?

Drift time: 500 ms
5-shot average

DIt time: 0TS * Drift time: 40 ms
single shot . single shot




Physical motivations

® Motivated by the experimental results of . Gao
people are now doing 3D Vortex Line/Navier-
Stokes coupled simulations: Galantucci, A.WV.
Baggaley, C. F. Barenghi, G. Krstulovic, Eur. Phys. J.
Plus, 135:547 (2020)

® Vortex Line/Lattice Boltzmann coupled
simulations have also been recently performed:
Sosuke Inui and Makoto Tsubota Phys. Rev. B

104, 214503 (2021)

® Next 3 slides: method and some typical results
obtained with these VL/NSE and VL/LBE models



LV/NSE method: PRF 8, 014702 (2023)

II. MODEL AND NUMERICAL EXPERIMENT

Our model builds on the vortex filament (VF) theory of Schwarz [18], a widely used approach
[19,20] which describes vortex lines as space curves s(&, 1) of infinitesimal thickness moving
according to

. aS / /P ! /
S(E. 1) = §=vs+as X Vg — 'S X (8 X V), (1)
(

where 8" = 98/0&, v,y = v, — vy ats, @ and o' are temperature-dependent friction coefficients [21],
v, is the normal fluid velocity at s, and v, is the superfluid velocity induced at s by the entire vortex
configuration £ via

K % (&1, 1) X [S—Sl(el-l)ld&.l 2)
C

V8 = s — s, (&1, )

4n
The original VF model consists of Eqgs. (1) and (2) and an algorithm to perform vortex recon-
nections. Its limitation is that the normal fluid velocity v, is imposed a priori, neglecting the
backreaction of the superfluid vortex lines on v,. Recent experiments [22,23] suggest that normal
fluid wakes may form behind each individual vortex line. To account for this effect, which is
crucial to understand quantized vortex bundles, we couple Eqs. (1) and (2) self-consistently with
the Navier-Stokes equations for v, supplemented with a mutual friction force F:

Jv I F .
(. - .n (V,, ' V)V,, — __Vpn .n "nvzvn I - ) (3)
dt P Pn

Froo = f fo(8)8(x —s)dE, V.v, =0, (4)
L




VL/NSE result

Eur. Phys. J. Plus (2020) 135:547 Page 19 of 28 547
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Fig. 7 A superfluid vortex ring moving in the normal fluid initially at rest. Half of the superfluid vortex ring
1s visible as a green line intersecting the xy plane; the superfluid vortex ring moves to the right along the
x direction. The normal fluid enstrophy is displayed by the orange-reddish-black rendering: two concentric
normal fluid vortex rings are visible, slightly ahead and slightly behind the superfluid vortex ring, travelling in
the same direction. The normal fluid velocity magnitude is also displayed using a black-blue-white rendering
on the xy plane



VL/LBE resulit

COUPLED DYNAMICS OF QUANTIZED VORTICES AND ... PHYSICAL REVIEW B 104, 214503 (2021)

(a) Ring-ring collision
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(b) Line-line reconnection
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FIG. 3. (a), (b) Snapshots of vortex reconnection events and normal-fluid vorticity distribution: (a) Collision of two vortex rings and
(b) vortex reconnection between two linear vortices. In each panel, the regions with low vorticity are set to be transparent such that the
high-vorticity region (in red) can be easily observed.




GPE for the superfluid?

* |dea: replace the Line vortex model by a Gross-
Pitaevskii model

e Interest: quantized vortex reconnection is described
without any phenomenological approximation

 Drawback: GPE needs to resolve the coherent length
(that is taken to be 0O in line vortex) so we’ll have much
less scale-separation than in a VLM



Standard (uncoupled) GPE and NSE

2
GPE zhaa—f - —h—V% + gly|*2,

m . .
—ff)(xat)), p(x,t) is the mass density

Madelung (x,t) = \/'D(: 2 exp (z

h
fluid velocity v = %Vqﬁ. y
. , . Iy
the vorticity w = V X v is given by /d8—5 (r —ro(s)),
: gk2[Wol2 A2k ok
Bogoliubov  ws(k) = \/ g = \/g|\IJO|2/m. § = NP

Incompressible NSE v+ (v-V)v=— le + V3,
p

Vv =0,




Previous attempts to couple NES and GPE

 There was a single attempt (to the best of our knowledge):
C. Coste, The European Physical Journal B - Condensed
Matter and Complex Systems, 1, pp 245-253 (1998)

 The context is the Landau compressible 2 fluid model

without vortices (First and Second sound, Fountain Effect,
etc.)

e Qur context is different: mutual friction on GPE vortices
and incompressible NSE



Building up the model

We need:

* 1) An expression for the vortex line velocity induced by
the GPE dynamics that is regular on the lines

e 2) Expressions for (a) the GPE lines slip velocity and (b)
the volume force on the normal fluid

e 3) Implement the line slip velocity in the GPE



Regularized superfluid velocity

v (l’) _ th va - va
) = o vt
*

2

Q =V x v,

2 2
oo -k ’
F—l — il [/ e mdk‘ = Ekz

2mm |- 2m

We finally define the mormalized’ vorticity field

Q=FQ=FVxv®Y

which has a norm that is maximum and close to 1 on the vortex line and
much smaller than 1 away from the vortex line.



Slip velocity and friction force

The Magnus force density caused by vg;, can be estimated starting from the
momentum conservation equation (Sonin, 1997):

Fyp = ps Vaip X (V x vi9). (19)

This force density must be opposite to the force density acting on the NS
fluid, thus

Fyp = —Fgn. (20)

For Fgy we start from the simple phenomenological expression considering a
force with longitudinal and transversal components

Fon ~ po [B8 x (8 x (v —vp))+ 58" x (v, — vp)], (21)




Slip velocity and friction force

where p,, and v,, are the density and velocity of the normal fluid, v, the
velocity of the vortex line, s’ the unit tangent to the line (see Fig. 1), and /3,

A" two phenomenological coefficients.

Figure 1: Sketch of velocities acting on a vortex line.

@ v the regularized

superfluid velocity,
v, the vortex velocity,

Vslip = VL — Vs the slip
velocity,

W= v, — v.? the

counterflow,
. . Ww
Wp =W — =~ ws the

counterflow perpendicular
to the vortex line.

Using the fact that on vortex lines the vector £2 = F€2 is of norm 1 and
directed along the line, we postulate the following formula for the volume

force, equivalent to Eq. (21):

Fon = pu [Bo(V % V') x (F(V x V") x (v, — v1)) + BL(V x v"%) x

v, —vi)|,

2
99
ropay




Slip velocity and friction force

then the equation Fup =—-Fsy.  yields:

vSlip — *Wp + ‘/*Q x W, FS.{V — pS ﬂ X (U*wp + V*Q x W).

with:

pn (BIQp+B. (ps+puBL))
B2 Q202 + (ps+puBL)°
B, pnps
B2 + (pstpaBL)’

=
[

)




Implementing the slip velocity in GPE

A

Vilip = l/r*wp T ‘;Q X W,

the first term is parallel to w and the second is perpendicular

Fsy = ps Q x (Usw, + V.2 x w).

the first term corresponds to a NSE force perpendicular to w and the
second to an NSE force parallel to w

So, in the case of a vortex ring moving in a zero-velocity normal fluid the
first term that changes the speed of the ring should not transfer energy
from GPE to NSE but the second that shrinks the ring and produces a

NSE force in the direction of the motion should transfer energy.



Conserving way to implement slip

o Consider a vortex set at the origin: v, = R(r)e*'?, solution of
2
— =%y + glUv|*Yy = 0.
@ A vortex moving at speed U™ is obtained through the

transformation v(x, t) = v, (x — tU*) and is solution of:

oY

a Uddv VU’—I(

z%vzw - %lwlzw) .

@ This term is obtained through the substitution V — V + —v that

was proposed by Coste, Nonlinear Schrodinger equation and
superfluid hydrodynamics, Eur. Phys. J. B, 1998.

@ The energy is conserved.

Non-conserving way to implement slip

o Consider the velocity U™ = &g x U,

@ And the dynamics:

@—JU‘“’V Vz,/)—l(i

2, &2
ot om Y ¥ 3 1Y w)'

o For short times the vortex is moving with speed U*®.
@ the Energy is dissipated.



Using both conserving and non-conserving ways

Vilip = U, Wy, T ‘/*Q X W,

@ Idea: let's use both approaches with the following advection velocities:

U = «W, conservative,
adv ‘2)5 A A -
U9 o X Viws x w = —V,|@s|w, non-conservative.
Ws

complex-valued vy, in the substitution V — V 4

vl = (U, +iV.||)w,

sllp




Numerical form of the model

1 1
——VP + VnV2Vn . _FSNv

Pn Pn
Vv, = 0.

alvll + (vn ' v)vn

Fsy = ps (V x V') x (Uyw, + V.2 x w),

withw =v, —vi¥9 w,=w — T}’zl‘}ﬂ and U, and V, given by

ih YV — Vi Pr (B3|ﬂ|2pn+B: (pstpnB, ))

- — — U* — 3
Vo) 2m Yy + €%p, ’ BE|Q|2P% + (pst+pn Bi)2
— &2 B*pnpe
V9 = (1+ ) F e s F(ve) ], V. = ~ ‘ -
=14 ( ‘ ") B2 + (ptpuBL)°

A
=
Il

1

| N N\~
i (av% —~(|]? = p )0 — - oL L
vl = (U, +iV,|Q)w,

sllp

- (v(;]fl V)Q' - _(v v(pl) |

slip sllp

+ np(aV* -1 (Iclz—ﬂs)cf + ).




Numerical form of the model

The final system of coupled equations (48) and (50) is advanced in time
using a fourth-order Runge-Kutta method (with implicit discretization of
Laplacian operators). Fourier-spectral space discretization is used for both
equations. The coupling algorithm was implemented in the framework of the
modern parallel (MPI-OpenMP) numerical code called GPS (Gross-Pitaevskii
Simulator) (Parnaudeau et al., 2015). The GPS code was initially designed as
a spectral parallel solver for the GP equation using various time-integration
methods (Strang splitting, relaxation, Crank-Nicolson). It was recently used to
simulate quantum turbulent flows (Kobavashi et al., 2021). The Navier-Stokes
solver was added to the GPS code using standard Fourier pseudo-spectral
method (Gottlieb and Orszag, 1977). Only one external library, FFTW (Frigo
and Johnson, 2005), was required for the computation.

L - - u



Model coefficient

The coupling model has several coefficients that have to be fixed accordingly to the physics or
be adjusted numerically.

To give the model a physical background, the friction coefficients U- and V- can be linked to

tabulated experimental friction coefficients used in the physical literature for helium II

The model also includes a few numerical coefficients that have to be prescribed: the
two smoothing parameters €2 and Kreg used in the definition of vI'€g , and the
dissipation coefficient 1.

On dimensional grounds, £2 has to be proportional to Qs,

Kreg to £—1 (the inverse of the healing length)‘ and

1D to the physical friction coefficient Btab.

They will be adjusted by numerical tests reproducing the evolution of quantized
vortices in a normal fluid.



Fixing the parameters on 2D vortex pairs

(a) -t - - K, =05/% (b) et - =0 (c) --<-- B,_=06,8B, =0.1
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Figure 2: 2D evolution of a superfluid vortex dipole. One-way GP-NS coupling,
with u,, = (0. Time evolution of the half distance between the two vortices
normalized by the size of the vortex core €. Solid lines represent the analytical
solution. (a) Results for three values of of the smoothing wave number k.,
and common values B,,, = 0.6 and B;,, = 0.1. (b) Results for three values of
the dissipation parameter np and common values B,,, = 0.6 and B,,, = 0.1.
(¢) Results for ke = 1/€, np = 0.02B44s, and three different choices for the

coupling force parameters B,,, and B;_,.



Fixing the parameters on 2D vortex pairs
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Figure 3: 2D evolution of a superfluid vortex dipole. One-way GP-NS coupling.
with u, = 0. Simulation with fixed parameters: B, = 04, B;,, = 0.1,
d/§ = 53, N = 256, kr'cé =& np = 0.02B,,,. (a) Trajectories of the two
vortices. (b) Time evolution of the the half distance between the two vortices
normalized by the size of the vortex core.



Effect of one-way two-way coupling

(a) ——s—— one way coupling 3o(b) ——&—— one way coupling
30 — — & —~ two way coupling — —é& —~ two way coupling
theory theory

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
time time

‘igure 4: 2D evolution of a superfluid vortex dipole. Time evolution of the
\alf distance between the two vortices normalized by the size of the vortex
ore £. Comparison between (— ¢ —) one-way coupling (u,, = 0) and (—A—)
wo-way coupling (u, # 0) for different physical parameters (a) : B, =
4, B;, = 0.1, np = 0.02B,;,, (b) : By, = 0.4, B;,, = 0.4, np = 0.01B,,.

“ommon parameters of the model: d/§ =53, N = 256, kr‘cé = €.



Two way coupling

(a)t=0.24 (b)t=24

Figure 5: 2D evolution of a superfluid vortex dipole. Two-way GP-NS coupling.
[llustration of the triple-vortex structure of the flow. The entrained normal
fluid is represented by its vorticity contours (colors) and streamlines (arrow
black lines). Superfluid vortices (white circles) are identified by an iso-contour
of low atomic density (0.5 |¢|?,,,). Snapshots of the flow for time instants:
(a) t=0.24, (b) t=24. Parameters of the simulation: B, = 0.4, B}, = 0.1,
np =0,d/§ =53, N =256, k! =¢.

reg



2D superfluid vortex pair
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3D vortex rings

(a)t=07

4

4

(c)t=07

Figure 6: 3D evolution of a superfluid vortex ring in a normal fluid initially
at rest. Snapshots for two time instants. Physical parameters p,/ps = 1,
By, = B,, = 04, np = 0.035B,,, (panels a, b), By, = 0.4 > B],, = 0.1,
np = 0.05B,,, (panels c, d). Illustration of the triple-vortex structure. The
superfluid vortex ring (in black) is identified by an iso-surface of low atomic
density (0.5 [¢|%,.). The two counter-rotating normal vortex rings are
identified by iso-surfaces of normal fluid azimuthal vorticity: 0.03 for the blue
outer ring and (—0.03) for the red inner ring. The streamlines in the normal

fluid are also drawn. Mesh resolution 1283.



3D superfluid vortex ring
e



Reconnection

(b)t=08

4

L.

Figure 7: 3D head-on collision of two superfluid vortex ring in a normal
fluid initially at rest. Snapshots for three time instants. Physical parameters
pn/ps =1, By = 0.4, B;_, = 0.1, np = 0.05B44. [llustration of the structure
of vortex reconnection. The superfluid vortex ring (in black) is identified by
an iso-surface of low atomic density (0.2 [¢)|2,..). The two counter-rotating
normal vortex rings are identified by iso-surfaces of normal fluid azimuthal
vorticity: (.05 for the blue outer ring and (—0.05) for the red inner ring. The

streamlines in the normal fluid are also drawn. Mesh resolution 1283.
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Conclusion

* The simulation of superfluid vortex rings head-on collision
proved the ability of the method to account, without any
phenomenological assumption, on the complex vortex
iInteraction and reconnection.

* This new numerical model offers the possibility to revisit many
fundamental phenomena established using the vortex filament
method for superfluids (see Tsubota et al. (2017)): reconnections
of superfluid vortex lines in a NS fluid, movement of superfluid
vortex bundles in a normal fluid, counter-flow quantum
turbulence and, finally, two-fluid quantum turbulence.



Thank you!



