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The talk is about this paper :

Why try to couple incompressible Navier-Stokes 
with a Gross-Pitaevskii superfluid?
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• Introduction: Burgers; Euler (compressible  and inc.); Gross-Pitaevskii Equation 
(GPE=Nonlinear Schrödinger) Madelung’s transformation. Example: Quantum 
shocks in (linear) Schrödinger Equation. 


• Some orders of magnitude.


• Physical motivations

The talk will start with a general introduction: 



Then I will present:
• Building up the model


• The uncoupled GP and NS equations 


• The regularized superfluid velocity field


• Determination of the slip velocity field and volume friction force


• Definition of coupling terms in the GP equation


• Numerical coupling algorithm


• Numerical results


• 2D superfluid vortex dipole: determination of model coefficients 
by comparing one-way GP-NS coupling to analytical solutions


• Results for two-way GP-NS coupling for the vortex dipole


• Results for 3D superfluid vortex rings and reconnection


• Conclusion



Introduction. Hydrodynamic 
Systems

• Perfect fluids


• Superfluids


• Simple examples using Burgers equation



What is a perfect fluid?

• Real classical fluids are viscous and conduct heat


• Perfect fluids are idealized models in which these 
mechanisms are neglected


• Perfect fluids have zero shear stresses, viscosities, and 
heat conduction


• Good approximation in some physical cases



Euler Equations

• A perfect fluid can be completely characterized by its 
velocity and two independent thermodynamic variables.


• If only one thermodynamic variable exists (e.g. isentropic 
perfect fluid) the fluid is barotropic.


• The density of a barotropic fluid is a function of pressure 
only.



Barotropic Euler equations

@tv + v ·rv = �1

⇢
rp

@t⇢+r(⇢v) = 0

p(x, t) = f(⇢(x, t))Barotropic:

Acoustic propagation: c =

s
@p

@⇢

Note that the system is time-reversible:

t ! �t ;v ! �v ; ⇢ ! ⇢ ; p ! p



Two useful limits
1. incompressible:

2. irrotational:

⇢ = cte

rv = 0
c ! 1

There is no equation of state and p is determined by 
maintaining the incompressibility

r⇥ v = 0

v = r�

Only compressible modes...

c =

s
@p

@⇢



Variational approach

• For the general case see e.g. : R. L. Seliger and G. B. 
Whitham, Variational Principles in Continuum Mechanics, 
Proc. R. Soc. Lond. A. 1968 305 1-25.


• Here I’ll show how to deal only with the compressible 
irrotational case..



Irrotational case
L = ⇢�t +

⇢(r�)2

2
+ g(⇢)

�L
��

= 0 ! ⇢t +r(⇢(r�)) = 0

�L
�⇢

= 0 ! �t +
(r�)2

2
+ g0 = 0

vt + v ·rv = �rg0

v = r�define:

taking the gradient of the last equation:

⇢g00 = p0

= �rp

⇢



What is a superfluid? 
Is it just an Eulerian perfect fluid? 

No! Superfluids obey the Gross-Pitaevskii equation 
(GPE) 

The quantum nature of the GPE does disturb 
some classical traditions of fluid mechanics. This 

often makes it unpopular… 



The Gross-Pitaeveski 
Equation (GPE)

• Describes a superfluid Bose-Einstein condensate at zero 
temperature


• Applies to a complex field


• Madelung’s transformation gives hydrodynamical form


• Contains quantum vortices with quantized velocity 
circulation h/m

i~@t = � ~2

2mr
2 + g| |2 

 =
p

⇢/m exp im
~ �



Variatitional formulation of 
the GPE

L = ⇢@t� + ⇢r�2

2 + g⇢2

2m2 + ~2(rp⇢)2

2m2

L = �i~ ̄@t + ~2|r |2
2m + g| |4

2

L = ⇢�t +
⇢(r�)2

2
+ g(⇢)

Contrast and compare with Euler Equation Lagrangian:

 =
p

⇢/m exp im
~ �



GPE and Madelung
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particles and g = 4�a~2

m with a the s-wave scattering length. This equation is also known
as (defocusing) non-linear Schrödinger equation. When g < 0 it is known as focusing
NLSE.

Equation (6.1) comes from a variational principle with the action

A =

⇧
dt d3x

⇤
i�
2

�
⇤̄

⌅⇤

⌅t
� ⇤

⌅⇤̄

⌅t

⇥⌅
�

⇧
dtH (6.2)

where
H =

⇧
d3x

�
�2

2m
|⇤⇤|2 +

g

2
|⇤|4

⇥
(6.3)

is the Hamiltonian.

Observe that a global change of phase of the wavefunction ⇤ implies a change of
the density at equilibrium. Equation (6.1) is sometimes written with an extra µ⇤ term.
This term has no dynamical e�ect and can be arbitrarily added.

There exists a one-to-one correspondence between fluid dynamics and GPE. It is
given by the Madelung transformation defined by

⇤(x, t) =

⌃
�(x, t)

m
exp [i

m

� ⇥(x, t)], (6.4)

where �(x, t) is the density and ⇥(x, t) is the potential velocity such that v = ⇤⇥. The
Madelung transformation (6.4) is singular on the zeros of ⇤. As two conditions are
required (the real and imaginary part of ⇤ must vanish) these singularities generally
take place on points in two-dimension and on curves in three-dimensions. The Onsager-
Feynman quantum of velocity circulation around vortex lines ⇤ = 0 is given by h/m.

Equation (6.1) expressed in terms of the hydrodynamical variables reads

⌅�

⌅t
+⇤ · �v = 0 (6.5)

⌅⇥

⌅t
+

1

2
(⇤⇥)2 +

g

m2
�� �2

2m2

⇤2⇥�
⇥

�
= 0 (6.6)

Equation (6.5) is the continuity equation and eq.(6.6) is the known as the Bernoulli
equation plus a term called quantum pressure. These are the equations governing the
dynamics of isentropic, compressible and irrotational fluids.
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I. INTRODUCTION

Strong turbulent effective dissipation has been observed
to take place in inviscid and conservative systems, in the
context of !compressible" low-temperature superfluid turbu-
lence #1,2$. Vortices are thus subject to some significant dy-
namical dissipation mechanism. It has been suggested that
sound emission from the vortices is the major decay process
#3–5$. Detailed mechanisms are fully three dimensional
!3D". They involve initial vortex reconnection followed by
secondary excitation of long-wavelength helical waves,
known as Kelvin waves, along the vortex line and their sub-
sequent decay into sound waves #6$. It appears that evaluat-
ing these complicated 3D effects from first principles is a
formidable task at the present time.

The purpose of the present paper is to compute the sim-
pler analogous problem in two dimensions. We thus consider
sound emission produced by the interaction of several vorti-
ces in a 2D homogenous system obeying the nonlinear
Schrödinger !NLS" equation.

Our main result is that the far field, and thus the radiation
effect can be directly computed in terms of an assumed vor-
tex motion #see Eq. !17"$. These main formulas are then
applied to the simple test case of two corotating vortices,
reproducing theoretical estimates of the same test case #7,8$,
and the prediction is compared to the result of numerical
integrations of the NLS equation.

The paper is organized as follows. In Sec. II we establish
the basic proprieties of the NLS equation and recall the gen-
eral expression for the field produced by moving vortices.
Section III is devoted to the derivation of explicit trajectory-
dependent expressions for the radiative contribution to the
far field and the radiated energy flux. Section IV contains the
determination of vortex trajectories by numerical solutions of
the NLS and the comparison with theoretical predictions.
Discussion and conclusions are finally given in Sec. V.

II. NONLINEAR SCHRÖDINGER EQUATION

We consider the nonlinear Schrodinger equation !NLSE"
written with the physically relevant parameters: the coher-
ence length " and the sound velocity c,

i
!#

!t
=

c
%2"

!− "2$# − # + &#&2#" . !1"

This equation has Galilean invariance with the transforma-
tion #!x , t"→#!x−vt , t"ei!v·x−v2t/2" and it also has a Lagrang-
ian structure from which we can calculate an energy-
momentum tensor and the conserved quantities
corresponding to space-time translations #4$.

We can map the NLSE to hydrodynamics equations using
the Madelung transformation defined by

#!x,t" = %%!x,t" exp'i
& !x,t"
%2c"

(. !2"

Replacing Eq. !2" in the NLSE !1" and separating real and
imaginary parts we get

!%

!t
+ ! · !% ! & " = 0, !3"

!&

!t
+

1
2

!"& "2 = c2!1 − %" + c2"2$%%

%%
. !4"

We recognize here the continuity equation !3" for a fluid of
density % and velocity v=!& and the Bernoulli equation !4",
except for the last term which is usually called quantum
pressure since it has no analog in standard fluid mechanics !it
is proportional to '2 in the superfluidity context and it can be
neglected when the semiclassical limit is taken".

We note that, if the function # has a zero, the density % is
well defined but the phase & is undefined. The existence of a
zero requires the real and the imaginary parts of # to vanish
simultaneously and consequently these kind of singularities
generically appear as curves in 3D and points in 2D. These
topological defects have the property that their circulation is
a multiple of 4( ) !)=c" /%2", and for this reason they are
called quantum vortices in the context of superfluidity. In 2D
a stationary vortex solution centered at the origin can be
constructed in polar coordinates !% ,*" using the ansatz
%!r ,*"=%0!r"2 and & !r ,*"=2)m*, with m!Z the vortex
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6.1.2 Sound propagation

The simplest stable solution of eq.(6.1) correspond to a wave function of homogeneous
density |⇤|2 = |A0|2. The linearization of eq.(6.1) around the solution ⇤ = A0e�iµt

(with µ = g|A0|2/�) leads to the Bogoliubov dispersion relation

⌅(k) =

⌥
g|A0|2

m
k2 +

�2

4m
k4. (6.21)

The sound velocity thus given by c =
⌃

g|A0|2/m and dispersive e�ects take place for
length scales smaller than the coherence length defined as

� =
⌃

�2/2m|A0|2g. (6.22)

� is also the length scale of the vortex core [27, 90].

6.1.3 Energy decomposition

Using the Madelung transformation (6.4) the energy can be decomposed into di�erent
terms of di�erent nature. Following Nore et al. [27] we define the total energy per unit
of volume etot as

etot =
1

V
[H � µN ]� µ2

2g
. (6.23)

This energy reexpressed in terms of the hydrodynamical variables reads

etot =
1

V

⇧
d3x

⇤
1

2
(
⇥

⇥v)2 +
g

2m

�
⇥� µ

gm

⇥2

+
�2

2m2
(⇤⇥⇥)2

⌅
(6.24)

We recognize three terms, the total kinetic energy Ekin, the internal energy Eint and
the quantum energy eq defined by

ekin =
1

V

⇧
d3x

1

2
(
⇥

⇥v)2 (6.25)

eint =
1

V

⇧
d3x

g

2m2

�
⇥� µm

g

⇥2

(6.26)

eq =
1

V

⇧
d3x

�2

2m2
(⇤⇥⇥)2 . (6.27)

With this decomposition we have etot = ekin + eint + eq.
To separate the energy coming from sound waves, the total kinetic energy can be

further decomposed into compressible ec
kin and incompressible ei

kin by computing the
kinetic term as ⇥⇥v = (

⇥
⇥v)c + (

⇥
⇥v)i where ⇤ · (

⇥
⇥v)i = 0. This decomposition is

obtained applying the projector Pµ⇥ = ⇧µ⇧⇥ � �µ�

⇥2 . The incompressible kinetic energy

Coherence length
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Energies

• See e.g.  Nore, et al., Phys. Rev. Lett. 78, 3896, 1997

• Parsesval’s theorem yields definition of energy spectra



1D Burgers equation,GPE and 
Madelung’s transformation

• Euler, irrotational case with zero pressure is called inviscid 
Burgers


• In this case, the GPE reduces to the (linear) Schrödinger 
equation


• Madelung transforms yields inviscid Burgers with an extra 
quantum pressure term


• In what immediately follows, we will compare the (slightly) 
viscous 1D Burgers case with the quantum case



Viscous Burgers
@t�+

1

2
(@x�)

2 = ⌫@xx�

�(t = 0) = � cosx

v = @x�

Pseudospectral calculation
⌫ = 0.006136
2
3 dealiasing 1024 grid points

x

t

V

Log[E]

X

k



Quantum shocks in (linear) 
GPE

Schrödinger equation: i@t = � ✏
2@xx 

Madelung’s transformation:  = ⇢1/2 exp i�✏
Equations of motion:

@t�+ 1
2 (@x�)

2 =
✏2@xx

p
⇢

2
p
⇢

@t⇢+ @x(⇢@x�) = 0

Initial data
�(t = 0) = � cosx
⇢(t = 0) = 1
v = @x�
✏ = 0.0117188



Single QFD shock
Density Velocity

Momentum=Density * VelocityDensity
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Single QFD shock

t

x

The Green function for Schrödinger’s equation i@t = � ✏
2@xx reads

G0(x, t|x0, t0) =

s
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The shock solution thus reads

 (x, t) =

Z 1

�1
dy

r
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e

i
✏

✓
(y�x)2

2t +cos(y)

◆

(1)

In the ✏ ! 0 limit, this integral can be computed by using Pearcey’s integral
defined by

IP(T,X) =

Z 1

�1
dy ei(Xy+Ty2+y4)

Asymptotic expressions can be readily obtained

see refs. in https://arxiv.org/abs/1709.10417

https://arxiv.org/abs/1709.10417
https://arxiv.org/abs/1709.10417


Some orders of magnitude

Here I only want to mention:

See e.g. Galantucci, Baggaley, Barenghi, Krstulovic, Eur. Phys. J. Plus (2020) 135:547  
for a detailed discussion of the orders of magnitude

• Helium phase diagram


• Landau’s 2-fluid model


• Characteristic  length: system size, inter vortex distance, 
coherence length, excitations mean free path


• characteristic speeds: first and second sound  speed 


• viscosity



Existing models
• HBVK


• 3D Vortex Line/Navier-Stokes coupled simulations



Models?
Can a GP-NS model be quantitatively applied to describe two-fluid 

helium quantum flows? 

First, in order to correctly describe superfluid liquid helium, we 
need a correct equation of state and a dispersion relation also 
involving rotons excitations. This implies that the GP equation 
needs to be extended by including non-local and higher order 

nonlinear terms. 

Second, the NS description itself for the normal fluid will be valid 
only for scales of the order, or smaller than the thermal excitation 

mean free path.  

A quantitative self-consistent description of the two-fluid helium 
flow for all range of temperatures is still an open problem. 



Physical motivations
• Recent experimental results have produced visualizations of the motion 

of the normal fluid in systems where it is coupled to the superfluid 
vortices by mutual friction

• Producing and imaging a thin line of He2∗ molecular tracers in helium-4, J. 
Gao, A. Marakov, W. Guo, B. T. Pawlowski, S. W. Van Sciver, G. G. Ihas, D. N. 
McKinsey, and W. F. Vinen, Review of Scientific Instruments 86, 093904 
(2015)



Physical motivations

• Motivated by the experimental results of J. Gao 
people are now doing 3D Vortex Line/Navier-
Stokes coupled simulations: Galantucci,  A. W. 
Baggaley, C. F. Barenghi, G. Krstulovic, Eur. Phys. J. 
Plus, 135:547 (2020)

• Vortex Line/Lattice Boltzmann  coupled 
simulations have also been recently performed: 
Sosuke Inui and Makoto Tsubota Phys. Rev. B 
104, 214503 (2021)

• Next 3 slides:  method and some typical results 
obtained with these VL/NSE and VL/LBE models



LV/NSE method: PRF 8, 014702 (2023) 



VL/NSE result



VL/LBE result



GPE for the superfluid?

• Idea: replace the Line vortex model by a Gross-
Pitaevskii model


• Interest: quantized vortex reconnection is described 
without any phenomenological approximation


• Drawback: GPE needs to resolve the coherent length 
(that is taken to be 0 in line vortex) so we’ll have much 
less scale-separation than in a VLM



Standard (uncoupled) GPE and NSE

GPE

Madelung

Incompressible NSE

Bogoliubov



Previous attempts to couple NES and GPE

• There was a single attempt (to the best of our knowledge):  
C. Coste,The European Physical Journal B - Condensed 
Matter and Complex Systems, 1, pp 245–253 (1998)


• The context is the Landau compressible  2 fluid model 
without vortices (First and Second sound, Fountain Effect, 
etc.)


• Our context is different: mutual friction on GPE vortices 
and incompressible NSE



Building up the model

• 1) An expression for the vortex line velocity induced by 
the GPE dynamics that is regular on the lines


• 2) Expressions for (a) the GPE lines slip velocity and (b) 
the volume force on the normal fluid


• 3) Implement the line slip velocity in the GPE

We need:



Regularized superfluid velocity



Slip velocity and friction force



Slip velocity and friction force



Slip velocity and friction force
then the equation yields: 

with: 



Implementing the slip velocity in GPE

the first term is parallel to w and the second is perpendicular

the first term corresponds to a NSE force perpendicular to w and the 
second to an NSE force parallel to w

So, in the case of a vortex ring moving in a zero-velocity normal fluid  the 
first term that changes the speed of the ring should not transfer energy 
from GPE to NSE but the second  that shrinks the ring and produces a 

NSE force in the direction of the motion should transfer energy.



Conserving way to implement slip

Non-conserving way to implement slip



Using both conserving and non-conserving  ways



Numerical form of the model



Numerical form of the model



Model coefficient
The coupling model has several coefficients that have to be fixed accordingly to the physics or 
be adjusted numerically. 
To give the model a physical background, the friction coefficients U⋆ and V⋆ can be linked to 
tabulated experimental friction coefficients used in the physical literature for helium II 

The model also includes a few numerical coefficients that have to be prescribed: the 
two smoothing parameters ε2 and kreg used in the definition of vreg , and the 
dissipation coefficient η.

On dimensional grounds, ε2 has to be proportional to ρs, 

kreg to ξ−1 (the inverse of the healing length) and 

ηD to the physical friction coefficient Btab. 

They will be adjusted by numerical tests reproducing the evolution of quantized 
vortices in a normal fluid.



Fixing the parameters on 2D vortex pairs



Fixing the parameters on 2D vortex pairs



Effect of one-way two-way coupling



Two way coupling 



2D superfluid vortex pair



3D vortex rings



3D superfluid vortex ring



Reconnection



Reconnection



• The simulation of superfluid vortex rings head-on collision 
proved the ability of the method to account, without any 
phenomenological assumption, on the complex vortex 
interaction and reconnection. 


• This new numerical model offers the possibility to revisit many 
fundamental phenomena established using the vortex filament 
method for superfluids (see Tsubota et al. (2017)): reconnections 
of superfluid vortex lines in a NS fluid, movement of superfluid 
vortex bundles in a normal fluid, counter-flow quantum 
turbulence and, finally, two-fluid quantum turbulence.

Conclusion



Thank you!


