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Introduction

* Interactions in superfluids cannot always be simplified as local
‘contact’ interactions.

* Dipole-dipole interactions (DDIs) occur naturally in strongly
magnetic Bose-Einstein condensates (BECs); must be treated
separately to the short-ranged interactions

* Novel effects arise due to the long-ranged and anisotropic
nature of the DDI — rotons, supersolids and stripes, modified
vortex-vortex interactions and dynamics, exotic vortex lattices
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Dipole-dipole interactions (DDIs)

* Cr, Er, Dy, Eu are strongly dipolar

 3eqal—3(B- 1)

Va(r) 47 r3

* Tuneable ratio (g44) of DDI to ‘contact’ interaction strengths
* Magnetostriction: dipoles preferentially align parallel to B.

e | Year

8Rb  0.007 1995
2cr  0.15 2005
162Dy 1.06 2015
164Dy 1.42 2011
166Er  1.06 2016
168Er  0.48 2012
151fy  0.54 2022
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Dipolar interactions in the mean-field

e Gross-Pitaevskii theory: we explicitly account for the DDI in
addition to the short-ranged interactions

0 1
e AR / &PrVa(r — ) () Py(x)
_3(B - )2
Va(r) = o0 L= 0

Va(k) = e4a[3(B - k)% — 1]
* Mean-field theory stability occurs only for-0.5<¢e,,< 1, cf. a
modified Bogoliubov spectrum, speed of sound and Landau
critical velocity

k2 (k2
w?(k) = o) {? + 2no[1 + £4q(3 cos? 91?,12 — 1)]}
C2 (R, 5dd)
62<€dd = 0)

=1+¢eqa(3cos’ 05 — 1)
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Dipolar BECs — miscellaneous phenomena

Density

Ground state

Experimental

Experimental

k (um=1)
Simulation

Simulation

1D to 2D supersolid transition;
M. Norcia et al., Nature 596, 357 (2021)

Experimental production of vortices;
L. Klaus et al., Nat. Phys. 18, 1453
(2022) .
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Dipolar rotons

* Localised depletion of superfluid (strong confinement,
vortices...) results in DDI screening by virtual dipole moments
polarised antiparallel to the real dipole moments.

* Dipole alignments with a nonzero projection orthogonal to the
depletion boundary produce density oscillations, i.e. rotons!

norm.

So(q,0)
3

Dynamical structure
2 factor measurement
D. Petter et al., Phys.
L' Rev. Lett. 122, 183401
. (2019)
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Roton instability spectrum
L. Santos et al., Phys. Rev.
Lett. 90, 250403 (2003) 6
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Case 1: magnetic field parallel or Case 2: magnetic field orthogonal to
anti-parallel to the depletion zone. the depletion zone. Real-virtual

Real-virtual interactions cancel out repulsion along axis parallel to the field,
= No screening and attraction along the binormal




Dipolar vortices

J=0 ) = arcsin(0.5) <1072
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Vortex lattice ground states
Y. Cai ... W. Bao, Phys. Rev. A

98, 023610 (2018)
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Vortex in a harmonic trap
S. Yiand H. Pu, Phys. Rev. A
73, 061602(R) (2006)
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Vortex ground states in a uniform background

Madelung transformation: © = vne”®; v=vVS

* Consider vortices along the z-axis with dipoles aligned along the x-axis.
Compressibility: anisotropic densities 2 anisotropic velocities
* Impose Neumann boundary conditions
0a1(0,) = 05( Ly, y) = 8y(2,0) = yib(x, L) = 0
and find ground states of the GP equation with a vortex at the
centre of the grid.

* Rotonic density peaks develop at minima of the local DDI potential and
the vortex cores are elongated along the dipole alignment

* Lobes of compressibility surround the vortex cores

* In agreement with “quasi-2D” results of Mulkerin et al., Phys. Rev. Lett.
111, 170402 (2013)
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Vortex ground states in a uniform background

y (I)

y (|)

y (l)

H

H
- |

y (1)

y ()

y ()

50
x ()

y (I)

-

Rows: €44 = 0.3 (top row), 0.6

y ()

- > (middle row), 0.9 (bottom
v . row).
e . Columns: n(x,y) - {n(p)) (left
o -~ column), S(x,y) - {S(p))
| . ISR B (middle column), (V4(x,y))
.i (right column)
o

y ()

10




Newcastle
< University

Same-signed vortex pair dynamics

e Again, consider dipole alignments along the x-
axis but with a pair of vortices of the same 53
circulation (I'=1)

* The trajectories deviate from the circular 521
orbits predicted by the point-vortex/Biot-
Savart model

* The trajectories are elongated along the y-axis =
and become dumbbell/Cassini oval-like for =
large €44. 491 |

* Interplay of effective vortex-vortex dipolar
interaction energy and vortex-vortex
hydrodynamic energy determines the pair .
trajectories | | | ‘ | | |

s1f

11




Newcastle
< University

Opposite-signed pair dynamics

* Now, consider the opposite-
signed, with a vortex dipole
moment along the y-axis

 We allow the magnetic dipole 0.180 -
moments to be polarized along
either the x- or y-axes -

* The vortex dipoles translate at = oo}
constant velocity, but the
velocities diverge from the
nondipolar Biot-Savart law 0160

* The vortex-vortex DDI
interaction energy decreases T L L L L
(increases) for higher 44 along €dd
the x-(y-)axes, causing higher
(lower) point-vortex energies

0.185

0.175 |-

0.165

12
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Vortex dipoles, Kelvin waves, reconnections

* Consider two vortex filaments with opposite circulations and with
Kelvin waves (shifted in phase by Tt w.r.t. each other) on each
filament

* Self-induction = time-dependent Kelvin mode population due to
different segments of the filaments travelling at different speeds

 The symmetric modes are dynamically unstable (Kuznetsov &
Rasmussen 1995; Phys. Rev. E 51, 4479), leading to reconnections
into vortex loops that cascade into smaller loops

* Analogous to the classical turbulent phenomenon of aircraft and
wingtip vortex interactions studied by Crow in 1970 (AIAA Journal
8,12, 2172)

13
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Crow instability

For €44 = 0, we initialise a vortex 100 100 4
dipole with a separation of 6.25 . =
healing lengths along y, populate Sty g
the lowest 20 Kelvin modes on N = il
each vortex and propagate the GP 251 25 1 ;
equation to observe the evolution N0 0
of the vortices. s | .
(N.B. This “figure’ is really a video; = 01 -
please play the accompanying -7 R
.m4v file!) ~100 1 -100
-2 6 é —2I5.5 —2I5.4 —2:5.3 —2'5.2 —2:5.1
y X

14
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Dipolar vortex reconnection times
How does the DDI influence the onset of the Crow instability?

The instability is driven by curvature along the binormal axis = the
Kelvin wave population is dependent on €44 and the direction of B.

Use the same ‘noise’ profile and initial vortex-vortex displacement
for B Il {x, y, z}, with an initial separation of 6.25 healing lengths
alongy.

240 |

220

200

Reconnection times as
functions of €44 and of
the dipole polarisation
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T < R
N M Vort(?x lines at tlm(_a of
2 s o E T the first reconnection
. § 8 Q: along x and z with
N D' fixed g44 = 0.5. Dipole
ol S lel~ | polarization along the
: x-axis (top), y-axis
e | ” é * = (middle) and z-axis
=Y o Trsy (bottom)
0 N ) The vortex filaments
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w0 o3 o~ o8 os e polarisations along y
= M= and s!owest anr)g_x,
Reconnection times as : \ ~::“:'.1% . <f_f_"; seemingly explaining
functions of €44 and of L2 (> the reconnection
the dipole polarisation } <‘ \1 suppression when the
P /\ 5 DDl is parallel to the
el 7 separation 16
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Conclusions and Outlook

* Dipole-dipole interactions considerably alter the qualitative
aspects of vortex ground state densities, phase profiles, vortex-
(anti-)vortex trajectories and vortex-vortex reconnections

* Modifications to Biot-Savart in the presence of the DDI?
e Does the vortex-vortex distance still scale as [t-tc|9->?
e Curvature and torsion of vortex lines during reconnections?

 Time-dependent dipole polarisations can be used to generate
vorticity; driven turbulence?

18




